55 research outputs found

    Earthquake Segment Boundaries and Tsunamigenic Faults of the Kodiak Segment, Alaska-Aleutian Subduction Zone

    Get PDF
    The most recent megathrust earthquake to impact the Alaska subduction zone was the M9.2 Great Alaska earthquake of 1964. This multi-segment rupture spanned over 700 km of the plate boundary and engendered both local and trans-Pacific tsunamis. The Kodiak Islands region served as the southwestern limit to rupture. The nature of past megathrust segmentation for the Alaska subduction zone has been largely hypothesized through paleoseismological methods and the Kodiak region in particular has not received a comprehensive geophysical characterization of its inferred segment boundaries. I analyze multiple geophysical datasets (e.g. seismic reflection, earthquake, potential fields) to understand the spatiotemporal relationships between subduction, accretion, lower and upper plate structure, and tsunamigenic fault hazard in the context of the known megathrust earthquake record and other interseismic observations for the Kodiak region. The northeast Kodiak segment boundary is defined by the subducting 58° fracture zone, which can be traced below the forearc using magnetic and gravitational fields. Subduction of this feature is expressed on post-1964 seismicity, is consistent with oblique shortening, and manifests itself within the upper plate as the Portlock Anticline. The southwest segment boundary marks the transition between the Kodiak and Semidi segments. It is shown to be a region that shifts from significant margin erosion to a region of imbricate thrusting and margin growth. These two zones are bound by fracture zone subduction. I furthermore independently constrain and compliment paleoseismological models of joint Kodiak and Semidi segment rupture by identifying and characterizing a through-going marine fault zone across this segment boundary. Finally, I revisit the source mechanisms for the local tsunami that inundated the Kodiak Islands as a result of the 1964 earthquake. I provide a new tsunamigenic source model that suggests discrete uplift of the Kodiak Islands shelf fault system and illuminate its along-strike rupture variability throughout the Holoecene epoch. My findings suggest segment boundaries across Kodiak have a clear geophysical expression and a multi-dataset approach is necessary to decipher tectonic controls on megathrust segmentation

    How the Transition Region Along the Cascadia Megathrust Influences Coseismic Behavior: Insights From 2‐D Dynamic Rupture Simulations

    Full text link
    There is a strong need to model potential rupture behaviors for the next Cascadia megathrust earthquake. However, there exists significant uncertainty regarding the extent of downdip rupture and rupture speed. To address this problem, we study how the transition region (i.e., the gap), which separates the locked from slow‐slip regions, influences coseismic rupture propagation using 2‐D dynamic rupture simulations governed by a slip‐weakening friction law. We show that rupture propagation through the gap is strongly controlled by the amount of accumulated tectonic initial shear stress and gap friction level. A large amplitude negative dynamic stress drop is needed to arrest downdip rupture. We also observe downdip supershear rupture when the gradient in effective normal stress from the locked to slow‐slip regions is dramatic. Our results justify kinematic rupture models that extend below the gap and suggests the possibility of high‐frequency energy radiation during the next Cascadia megathrust earthquake.Plain Language SummaryHow large, deep, and damaging a future earthquake will be depends on factors such as energy release that must be constrained by precise observations of previous earthquakes in the same area. But such data are rarely available. Instead, computer models of earthquakes guided by the laws of physics can provide us with estimates of potential ground shaking for a future event. In our study, we design two‐dimensional earthquake simulations for the Cascadia fault below the northwestern United States coast and test different hypotheses for how stress may be accumulating at depth along this fault. Our models focus on a portion of the fault referred to as the “gap.” The gap physically separates a shallow region that slips during large earthquakes from a deeper region that experiences intermittent slip between large earthquakes. A gap region similar to that in Cascadia is also found in Japan, Mexico, and around other active faults worldwide. We find that our simulated rupture is able to extend to deeper regions at faster speeds given the current understanding of stress levels and earthquake fault friction in the gap. While this work represents only a first step toward understanding how stresses and friction influence how the Cascadia fault might slip, it lays the foundation for modeling more complex physics that can help scientists better predict shaking from seismic waves.Key PointsWe examine dynamic source effects on along‐dip rupture propagation for a Cascadia megathrust earthquakeSimulated earthquake rupture is able to penetrate through the transition zone and reach the deeper slow‐slip regionOur results underscore the potential for a deeper downdip rupture and faster rupture speed than previously assumed in kinematic modelsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148357/1/grl58609.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148357/2/grl58609_am.pd

    Upper-Plate Structure and Tsunamigenic Faults Near the Kodiak Islands, Alaska, USA

    Get PDF
    The Kodiak Islands lie near the southern terminus of the 1964 Great Alaska earthquake rupture area and within the Kodiak subduction zone segment. Both local and trans-Pacific tsunamis were generated during this devastating megathrust event, but the local tsunami source region and the causative faults are poorly understood. We provide an updated view of the tsunami and earthquake hazard for the Kodiak Islands region through tsunami modeling and geophysical data analysis. Using seismic and bathymetric data, we characterize a regionally extensive seafloor lineament related to the Kodiak shelf fault zone, with focused uplift along a 50-km-long portion of the newly named Ugak fault as the most likely source of the local Kodiak Islands tsunami in 1964. We present evidence of Holocene motion along the Albatross Banks fault zone, but we suggest that this fault did not produce a tsunami in 1964. We relate major structural boundaries to active forearc splay faults, where tectonic uplift is collocated with gravity lineations. Differences in interseismic locking, seismicity rates, and potential field signatures argue for different stress conditions at depth near presumed segment boundaries. We find that the Kodiak segment boundaries have a clear geophysical expression and are linked to upper-plate structure and splay faulting. The tsunamigenic fault hazard is higher for the Kodiak shelf fault zone when compared to the nearby Albatross Banks fault zone, suggesting short wave travel paths and little tsunami warning time for nearby communities

    Registering the evolutionary history in individual-based models of speciation

    Get PDF
    Understanding the emergence of biodiversity patterns in nature is a central problem in biology. Theoretical models of speciation have addressed this question in the macroecological scale, but little has been done to connect microevolutionary processes with macroevolutionary patterns. Knowledge of the evolutionary history allows the study of patterns underlying the processes being modeled, revealing their signatures and the role of speciation and extinction in shaping macroevolutionary patterns. In this paper we introduce two algorithms to record the evolutionary history of populations and species in individual-based models of speciation, from which genealogies and phylogenies can be constructed. The first algorithm relies on saving ancestor–descendant relationships, generating a matrix that contains the times to the most recent common ancestor between all pairs of individuals at every generation (the Most Recent Common Ancestor Time matrix, MRCAT). The second algorithm directly records all speciation and extinction events throughout the evolutionary process, generating a matrix with the true phylogeny of species (the Sequential Speciation and Extinction Events, SSEE). We illustrate the use of these algorithms in a spatially explicit individual-based model of speciation. We compare the trees generated via MRCAT and SSEE algorithms with trees inferred by methods that use only genetic distance between individuals of extant species, commonly used in empirical studies and applied here to simulated genetic data. Comparisons between trees are performed with metrics describing the overall topology, branch length distribution and imbalance degree. We observe that both MRCAT and distance-based trees differ from the true phylogeny, with the first being closer to the true tree than the second.Facultad de Ciencias Naturales y Muse

    Assessing Margin-wide Rupture Behavior along hte Cascadia Megathrust using 3-D Dynamic Rupture Simulations

    Get PDF
    This work is a non-peer reviewed preprint submitted to EarthArXiv. It is currently under review at Journal of Geophysical Research: Solid Earth.From California to British Columbia, the Pacific Northwest coast bears an omnipresent earthquake and tsunami hazard from the Cascadia subduction zone. Multiple lines of evidence suggests that magnitude eight and greater megathrust earthquakes have occurred - the most recent being 321 years ago (i.e., 1700 A.D.). Outstanding questions for the next great megathrust event include where it will initiate, what conditions are favorable for rupture to span the convergent margin, and how much slip may be expected. We develop the first 3-D fully dynamic rupture simulations that are driven by fault stress, strength and friction to address these questions. The initial dynamic stress drop distribution in our simulations is constrained by geodetic coupling models, with segment locations taken from paleoseismic analyses. We document the sensitivity of nucleation location and stress drop to the final seismic moment and coseismic subsidence amplitudes. We find that the final earthquake size strongly depends on the amount of slip deficit in the central Cascadia region, which is inferred to be creeping interseismically, for a given initiation location in southern or northern Cascadia. Several simulations are also presented here that can closely approximate recorded coastal subsidence from the 1700 A.D. event without invoking localized high-stress asperities along the down-dip locked region of the megathrust. These results can be used to inform earthquake and tsunami hazards for not only Cascadia, but other subduction zones that have limited seismic observations but a wealth of geodetic inference.http://deepblue.lib.umich.edu/bitstream/2027.42/167720/1/Ramos_et_al_JGR_submission_eartharxiv.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167720/2/Ramos_et_al_Supplemental_Info_eartharxiv.pdfDescription of Ramos_et_al_JGR_submission_eartharxiv.pdf : Main articleDescription of Ramos_et_al_Supplemental_Info_eartharxiv.pdf : Supplemental infoSEL

    How does public opinion become extreme?

    Full text link
    We investigate the emergence of extreme opinion trends in society by employing statistical physics modeling and analysis on polls that inquire about a wide range of issues such as religion, economics, politics, abortion, extramarital sex, books, movies, and electoral vote. The surveys lay out a clear indicator of the rise of extreme views. The precursor is a nonlinear relation between the fraction of individuals holding a certain extreme view and the fraction of individuals that includes also moderates, e.g., in politics, those who are “very conservative” versus “moderate to very conservative” ones. We propose an activation model of opinion dynamics with interaction rules based on the existence of individual “stubbornness” that mimics empirical observations. According to our modeling, the onset of nonlinearity can be associated to an abrupt bootstrap-percolation transition with cascades of extreme views through society. Therefore, it represents an early-warning signal to forecast the transition from moderate to extreme views. Moreover, by means of a phase diagram we can classify societies according to the percolative regime they belong to, in terms of critical fractions of extremists and people’s ties

    Predicting potential distribution and identifying priority areas for conservation of the Yellow-tailed Woolly Monkey (Lagothrix flavicauda) in Peru

    Get PDF
    Species distribution models (SDMs) provide conservationist with spatial distributions estimations of priority species. Lagothrix flavicauda (Humboldt, 1812), commonly known as the Yellow-tailed Woolly Monkey, is one of the largest primates in the New World. This species is endemic to the montane forests of northern Peru, in the departments of Amazonas, San Martín, Huánuco, Junín, La Libertad, and Loreto at elevation from1,000 to 2,800 m. It is classified as “Critically Endangered” (CR) by the International Union for Conservation of Nature (IUCN) as well as by Peruvian legislation. Furthermore, it is listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Research on precise estimates of its potential distribution are scare. Therefore, in this study we modeled the potential distribution area of this species in Peru, the model was generated using the MaxEnt algorithm, along with 80 georeferenced occurrence records and 28 environmental variables. The total distribution (high, moderate, and low) for L. flavicauda is 29,383.3 km2, having 3,480.7 km2 as high potential distribution. In effect, 22.64 % (6,648.49 km2) of the total distribution area of L. flavicauda is found within Natural Protected Areas (NPAs), with the following categories representing the largest areas of distribution: Protected Forests (1,620.41 km2), Regional Conservation Areas (1,976.79 km2), and Private Conservation Areas (1,166.55 km2). After comparing the predicted distribution with the current NPAs system, we identified new priority areas for the conservation of the species. We, therefore, believe that this study will contribute significantly to the conservation of L. flavicauda in Peru

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore