144 research outputs found

    A Survey of Software-Defined Networks-on-Chip: Motivations, Challenges and Opportunities

    Get PDF
    Current computing platforms encourage the integration of thousands of processing cores, and their interconnections, into a single chip. Mobile smartphones, IoT, embedded devices, desktops, and data centers use Many-Core Systems-on-Chip (SoCs) to exploit their compute power and parallelism to meet the dynamic workload requirements. Networks-on-Chip (NoCs) lead to scalable connectivity for diverse applications with distinct traffic patterns and data dependencies. However, when the system executes various applications in traditional NoCs—optimized and fixed at synthesis time—the interconnection nonconformity with the different applications’ requirements generates limitations in the performance. In the literature, NoC designs embraced the Software-Defined Networking (SDN) strategy to evolve into an adaptable interconnection solution for future chips. However, the works surveyed implement a partial Software-Defined Network-on-Chip (SDNoC) approach, leaving aside the SDN layered architecture that brings interoperability in conventional networking. This paper explores the SDNoC literature and classifies it regarding the desired SDN features that each work presents. Then, we described the challenges and opportunities detected from the literature survey. Moreover, we explain the motivation for an SDNoC approach, and we expose both SDN and SDNoC concepts and architectures. We observe that works in the literature employed an uncomplete layered SDNoC approach. This fact creates various fertile areas in the SDNoC architecture where researchers may contribute to Many-Core SoCs designs.Las plataformas informáticas actuales fomentan la integración de miles de núcleos de procesamiento y sus interconexiones, en un solo chip. Los smartphones móviles, el IoT, los dispositivos embebidos, los ordenadores de sobremesa y los centros de datos utilizan sistemas en chip (SoC) de muchos núcleos para explotar su potencia de cálculo y paralelismo para satisfacer los requisitos de las cargas de trabajo dinámicas. Las redes en chip (NoC) conducen a una conectividad escalable para diversas aplicaciones con distintos patrones de tráfico y dependencias de datos. Sin embargo, cuando el sistema ejecuta varias aplicaciones en las NoC tradicionales -optimizadas y fijadas en el momento de síntesis, la disconformidad de la interconexión con los requisitos de las distintas aplicaciones genera limitaciones en el rendimiento. En la literatura, los diseños de NoC adoptaron la estrategia de redes definidas por software (SDN) para evolucionar hacia una solución de interconexión adaptable para los futuros chips. Sin embargo, los trabajos estudiados implementan un enfoque parcial de red definida por software en el chip (SDNoC) de SDN, dejando de lado la arquitectura en capas de SDN que aporta interoperabilidad en la red convencional. Este artículo explora la literatura sobre SDNoC y la clasifica en función de las características SDN que presenta cada trabajo. A continuación, describimos los retos y oportunidades detectados a partir del estudio de la literatura. Además, explicamos la motivación para un enfoque SDNoC, y exponemos los conceptos y arquitecturas de SDN y SDNoC. Observamos que los trabajos en la literatura emplean un enfoque SDNoC por capas no completo. Este hecho crea varias áreas fértiles en la arquitectura SDNoC en las que los investigadores pueden contribuir a los diseños de SoCs de muchos núcleos

    An overview of offshore wind energy resources in Europe under present and future climate

    Get PDF
    Long-term sustainable development of European offshore wind energy requires knowledge of the best places for installing offshore wind farms. To achieve this, a good knowledge of wind resources is needed, as well as knowledge of international, European, and national regulations regarding conflict management, marine environment conservation, biodiversity protection, licensing processes, and support regimes. Such a multidisciplinary approach could help to identify areas where wind resources are abundant and where conflicts with other interests are scarce, support measures are greater, and licensing processes are streamlined. An overview of offshore wind power studies at present, and of their future projections for the 21st century, allows for determining the optimal European locations to install or maintain offshore wind farms. Only northern Europe, the northwest portion of the Iberian Peninsula, the Gulf of Lyon, the Strait of Gibraltar, and the northwest coast of Turkey show no change or increase in wind power, revealing these locations as the most suitable for installing and maintaining offshore wind farms in the future. The installation of wind farms is subject to restrictions established under international law, European law, and the domestic legal framework of each EU member state. Europe is moving toward streamlining of licensing procedures, reducing subsidies, and implementing auction systems.Xunta de Galicia | Ref. ED431C 2017/64Xunta de Galicia | Ref. ED481A-2016/36Fundação para a Ciência e a Tecnologia | Ref. SFRH/BPD/118142/20

    Labour supply and employment in the euro area countries - developments and challenges

    Get PDF
    The aim of this report, which has been prepared by a Task Force of the Monetary Policy Committee of the Eurosystem, is to describe and analyse the main developments in labour supply and its determinants in the euro area, review the links between labour supply and labour market institutions, assess how well labour supply reflects the demand for labour in the euro area and identify the future challenges for policy-makers. The data available for this report generally cover the period from 1983 to spring 2007. JEL Classification: E5, J1, J2, J6.Labour supply, employment, participation, hours worked, immigration, skill and education, structural policies, labour demand, unemployment, euro area countries, labour markets, taxes and benefits, childcare, pensions, training, human capital, labour quality, working time and contracts, discrimination, mismatch, returns to education.

    Morbid liver manifestations are intrinsically bound to metabolic syndrome and nutrient intake based on a machine-learning cluster analysis

    Full text link
    Metabolic syndrome (MetS) is one of the most important medical problems around the world. Identification of patient ' s singular characteristic could help to reduce the clinical impact and facilitate individualized management. This study aimed to categorize MetS patients using phenotypical and clinical variables habitually collected during health check-ups of individuals considered to have high cardiovascular risk. The selected markers to categorize MetS participants included anthropometric variables as well as clinical data, biochemical parameters and prescribed pharmacological treatment. An exploratory factor analysis was carried out with a subsequent hierarchical cluster analysis using the z-scores from factor analysis. The first step identified three different factors. The first was determined by hypercholesterolemia and associated treatments, the second factor exhibited glycemic disorders and accompanying treatments and the third factor was characterized by hepatic enzymes. Subsequently four clusters of patients were identified, where cluster 1 was characterized by glucose disorders and treatments, cluster 2 presented mild MetS, cluster 3 presented exacerbated levels of hepatic enzymes and cluster 4 highlighted cholesterol and its associated treatments Interestingly, the liver status related cluster was characterized by higher protein consumption and cluster 4 with low polyunsaturated fatty acid intake. This research emphasized the potential clinical relevance of hepatic impairments in addition to MetS traditional characterization for precision and personalized management of MetS patients

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore