34 research outputs found

    Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis

    Get PDF
    Atherosclerosis is an inflammatory vascular disease responsible for the first cause of mortality worldwide. Recent studies have clearly highlighted the critical role of the immunoinflammatory balance in the modulation of disease development and progression. However, the immunoregulatory pathways that control atherosclerosis remain largely unknown. We show that loss of suppressor of cytokine signaling (SOCS) 3 in T cells increases both interleukin (IL)-17 and IL-10 production, induces an antiinflammatory macrophage phenotype, and leads to unexpected IL-17–dependent reduction in lesion development and vascular inflammation. In vivo administration of IL-17 reduces endothelial vascular cell adhesion molecule–1 expression and vascular T cell infiltration, and significantly limits atherosclerotic lesion development. In contrast, overexpression of SOCS3 in T cells reduces IL-17 and accelerates atherosclerosis. We also show that in human lesions, increased levels of signal transducer and activator of transcription (STAT) 3 phosphorylation and IL-17 are associated with a stable plaque phenotype. These results identify novel SOCS3-controlled IL-17 regulatory pathways in atherosclerosis and may have important implications for the understanding of the increased susceptibility to vascular inflammation in patients with dominant-negative STAT3 mutations and defective Th17 cell differentiation

    Les contraintes de cisaillement et la physiopathologie vasculaire (rÎle dans l'athérosclérose et le remodelage)

    No full text
    PARIS7-BibliothĂšque centrale (751132105) / SudocSudocFranceF

    Shear Stress Regulates Endothelial Microparticle Release

    No full text
    International audienceRationale: Endothelial activation and apoptosis release membrane-shed microparticles (EMP) that emerge as important biological effectors. Objective: Because laminar shear stress (SS) is a major physiological regulator of endothelial survival, we tested the hypothesis that SS regulates EMP release. Methods and Results: EMP levels were quantified by flow cytometry in medium of endothelial cells subjected to low or high SS (2 and 20 dyne/cm 2 ). EMP levels augmented with time in low SS conditions compared with high SS conditions. This effect was sensitive to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Rho kinases inhibitors but unaffected by caspase inhibitors. Low SS-stimulated EMP release was associated with increased endothelial Rho kinases and ERK1/2 activities and cytoskeletal reorganization. Overexpression of constitutively active RhoA stimulated EMP release under high SS. We also examined the effect of nitric oxide (NO) in mediating SS effects. L-NG-nitroarginine methyl ester (L-NAME), but not D-NG-nitroarginine methyl ester, increased high SS-induced EMP levels by 3-fold, whereas the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) decreased it. L-NAME and SNAP did not affect Rho kinases and ERK1/2 activities. Then, we investigated NO effect on membrane remodeling because microparticle release is abolished in ABCA1-deficient cells. ABCA1 expression, which was greater under low SS than under high SS, was augmented by L-NAME under high SS and decreased by SNAP under low SS conditions. Conclusions: Altogether, these results demonstrate that sustained atheroprone low SS stimulates EMP release through activation of Rho kinases and ERK1/2 pathways, whereas atheroprotective high SS limits EMP release in a NO-dependent regulation of ABCA1 expression and of cytoskeletal reorganization. These findings, therefore, identify endothelial SS as a physiological regulator of microparticle release

    Microparticles From Human Atherosclerotic Plaques Promote Endothelial ICAM-1–Dependent Monocyte Adhesion and Transendothelial Migration

    No full text
    International audienceRationale and Objective: Membrane-shed submicron microparticles (MPs) released following cell activation or apoptosis accumulate in atherosclerotic plaques, where they stimulate endothelial proliferation and neovessel formation. The aim of the study was to assess whether or not MPs isolated from human atherosclerotic plaques contribute to increased endothelial adhesion molecules expression and monocyte recruitment. Method and Results: Human umbilical vein and coronary artery endothelial cells were exposed to MPs isolated from endarterectomy specimens (n=62) and characterized by externalized phosphatidylserine. Endothelial exposure to plaque, but not circulating, MPs increased ICAM-1 levels in a concentration-dependant manner (3.4-fold increase) without affecting ICAM-1 mRNA levels. Plaque MPs harbored ICAM-1 and transferred this adhesion molecule to endothelial cell membrane in a phosphatidylserine-dependent manner. MP-borne ICAM-1 was functionally integrated into cell membrane as demonstrated by the increased ERK1/2 phosphorylation following ICAM-1 ligation. Plaque MPs stimulated endothelial monocyte adhesion both in culture and in isolated perfused mouse carotid. This effect was also observed under flow condition and was prevented by anti–LFA-1 and anti–ICAM-1 neutralizing antibodies. MPs isolated from symptomatic plaques were more potent in stimulating monocyte adhesion than MPs from asymptomatic patients. Plaque MPs did not affect the release of interleukin-6, interleukin-8, or MCP-1, nor the expression of VCAM-1 and E-selectin. Conclusion: These results demonstrate that MPs isolated from human atherosclerotic plaques transfer ICAM-1 to endothelial cells to recruit inflammatory cells and suggest that plaque MPs promote atherosclerotic plaque progression
    corecore