8 research outputs found

    Food and Drug Administration approvals in phase 3 Cancer clinical trials

    No full text
    Abstract Background Phase 3 oncologic randomized clinical trials (RCTs) can lead to Food and Drug Administration (FDA) approvals. In this study, we aim to identify trial-related factors associated with trials leading to subsequent FDA drug approvals. Methods We performed a database query through the ClinicalTrials.gov registry to search for oncologic phase 3 RCTs on February 2020. We screened all trials for therapeutic, cancer-specific, phase 3, randomized, multi-arm trials. We then identified whether a trial was used for subsequent FDA drug approval through screening of FDA approval announcements. Results In total, 790 trials were included in our study, with 225 trials (28.4%) generating data that were subsequently used for FDA approvals. Of the 225 FDA approvals identified, 65 (28.9%) were based on trials assessing overall survival (OS) as a primary endpoint (PEP), two (0.9%) were based on trials with a quality of life (QoL) PEP, and 158 approvals (70.2%) were based on trials with other PEP (P = 0.01). FDA approvals were more common among industry funded-trials (219, 97.3%; P < 0.001), and less common among trials sponsored by national cooperative groups (21, 9.3%; P < 0.001). Finally, increased pre-hoc power and meeting patients’ accrual target were associated with FDA approvals (P < 0.001). Conclusions The majority of FDA approvals are based on data generated from trials analyzing surrogate primary endpoints and trials receiving industry funding. Additional studies are required to understand the complexity of FDA approvals

    Association between Prior Malignancy Exclusion Criteria and Age Disparities in Cancer Clinical Trials

    No full text
    Prior malignancy exclusion criteria (PMEC) are often utilized in cancer clinical trials; however, the incidence of PMEC and the association of PMEC with trial participant age disparities remain poorly understood. This study aimed to identify age disparities in oncologic randomized clinical trials as a result of PMEC. Using a comprehensive collection of modern phase III cancer clinical trials obtained via ClinicalTrials.gov, we assessed the incidence and covariates associated with trials excluding patients with prior cancers within 5+ years from registration (PMEC-5). Using the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) database, we further sought to determine the correlation between PMEC-5 and age disparities. PMEC-5 were used in 41% of all trials, with higher PMEC-5 utilization among industry-supported trials as well as trials evaluating a targeted therapy. Comparing trial patient median ages with population-matched median ages by disease site and time-period, we assessed the association between PMEC-5 and age disparities among trial participants. PMEC-5 were independently associated with heightened age disparities, which further worsened with longer exclusionary timeframes. Together, PMEC likely contribute to age disparities, suggesting that eligibility criteria modernization through narrower PMEC timeframes may work toward reducing such disparities in cancer clinical trial enrollment

    Escalated‐dose radiotherapy for unresected locally advanced pancreatic cancer: Patterns of care and survival in the United States

    No full text
    Abstract Introduction With locally advanced pancreatic cancer (LAPC), uncontrolled local tumor growth frequently leads to mortality. Advancements in radiotherapy (RT) techniques have enabled conformal delivery of escalated‐dose RT (EDR), which may have potential local control and overall survival (OS) benefits based on retrospective and early prospective studies. With evidence for EDR emerging, we characterized the adoption of EDR across the United States and its associated outcomes. Methods We searched the National Cancer Database for nonsurgically managed LAPC patients diagnosed between 2004 and 2019. Pancreas‐directed RT with biologically effective doses (BED10) ≥39 and ≤70 Gy was labeled conventional‐dose RT (CDR), and BED10 >70 and ≤132 Gy was labeled EDR. We identified associations of EDR and OS using logistic and Cox regressions, respectively. Results Among the definitive therapy subset (n = 54,115) of the entire study cohort (n = 91,493), the most common treatments were chemotherapy alone (69%), chemotherapy and radiation (29%), and RT alone (2%). For the radiation therapy subset (n = 16,978), use of pancreas‐directed RT remained between 13% and 17% over the study period (ptrend > 0.999). Using multivariable logistic regression, treatment at an academic/research facility (adjusted odds ratio [aOR] 1.46, p < 0.001) and treatment between 2016 and 2019 (aOR 2.54, p < 0.001) were associated with greater receipt of EDR, whereas use of chemotherapy (aOR 0.60, p < 0.001) was associated with less receipt. Median OS estimates for EDR and CDR were 14.5 months and 13.0 months (p < 0.0001), respectively. For radiation therapy subset patients with available survival data (n = 13,579), multivariable Cox regression correlated EDR (adjusted hazard ratio 0.85, 95% confidence interval 0.80–0.91; p < 0.001) with longer OS versus CDR. Discussion and Conclusions Utilization of EDR has increased since 2016, but overall utilization of RT for LAPC has remained at less than one in five patients for almost two decades. These real‐world results additionally provide an estimate of effect size of EDR for future prospective trials

    A prospective study of the adaptive changes in the gut microbiome during standard-of-care chemoradiotherapy for gynecologic cancers.

    No full text
    BackgroundA diverse and abundant gut microbiome can improve cancer patients' treatment response; however, the effect of pelvic chemoradiotherapy (CRT) on gut diversity and composition is unclear. The purpose of this prospective study was to identify changes in the diversity and composition of the gut microbiome during and after pelvic CRT.Materials and methodsRectal swabs from 58 women with cervical, vaginal, or vulvar cancer from two institutions were prospectively analyzed before CRT (baseline), during CRT (weeks 1, 3, and 5), and at first follow-up (week 12) using 16Sv4 rRNA gene sequencing of the V4 hypervariable region of the bacterial 16S rRNA marker gene. 42 of these patients received antibiotics during the study period. Observed operational taxonomic units (OTUs; representative of richness) and Shannon, Simpson, Inverse Simpson, and Fisher diversity indices were used to characterize alpha (within-sample) diversity. Changes over time were assessed using a paired t-test, repeated measures ANOVA, and linear mixed modeling. Compositional changes in specific bacteria over time were evaluated using linear discriminant analysis effect size.ResultsGut microbiome richness and diversity levels continually decreased throughout CRT (mean Shannon diversity index, 2.52 vs. 2.91; all P ConclusionAfter CRT, the diversity of the gut microbiomes in this population tended to return to baseline levels by the 12 week follow-up period, but structure and composition remained significantly altered. These changes should be considered when designing studies to analyze the gut microbiome in patients who receive pelvic CRT for gynecologic cancers
    corecore