5 research outputs found

    Discrete Cylindrical Vector Beam Generation from an Array of Optical Fibers

    Full text link
    A novel method is presented for the beam shaping of far field intensity distributions of coherently combined fiber arrays. The fibers are arranged uniformly on the perimeter of a circle, and the linearly polarized beams of equal shape are superimposed such that the far field pattern represents an effective radially polarized vector beam, or discrete cylindrical vector (DCV) beam. The DCV beam is produced by three or more beams that each individually have a varying polarization vector. The beams are appropriately distributed in the near field such that the far field intensity distribution has a central null. This result is in contrast to the situation of parallel linearly polarized beams, where the intensity peaks on axis

    Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications

    Get PDF
    We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency

    A Study of Spiking and Relaxation Oscillations in Nd:YAG Laser Using Measured Laser Parameters

    Get PDF
    It was shown analytically and experimentally that when the cavity losses are perturbed, the output intensity experiences an amplitude modulation or becomes a regular train of spikes, with the frequency depending on both the frequency of perturbation as well as pump power. Coupled nonlinear rate equations including the cavity perturbation term, are solved numerically by a Runga-Kutta method using experimentally-measured parameter values for Nd: Y AG laser. A continuously pumped Nd: Y AG laser was used to verify this theory
    corecore