3,483 research outputs found
Globalization and Industrial Labor Markets in South Asia: Some Aspects of Adjustment in a Less Integrated Region
Long-lived Giant Number Fluctuations in a Swarming Granular Nematic
Coherently moving flocks of birds, beasts or bacteria are examples of living
matter with spontaneous orientational order. How do these systems differ from
thermal equilibrium systems with such liquid-crystalline order? Working with a
fluidized monolayer of macroscopic rods in the nematic liquid crystalline
phase, we find giant number fluctuations consistent with a standard deviation
growing linearly with the mean, in contrast to any situation where the Central
Limit Theorem applies. These fluctuations are long-lived, decaying only as a
logarithmic function of time. This shows that flocking, coherent motion and
large-scale inhomogeneity can appear in a system in which particles do not
communicate except by contact.Comment: This is the author's version of the work. It is posted here by
permission of the AAAS. The definitive version is to appear in SCIENC
Structure and Rheology of the Defect-gel States of Pure and Particle-dispersed Lyotropic Lamellar Phases
We present important new results from light-microscopy and rheometry on a
moderately concentrated lyotropic smectic, with and without particulate
additives. Shear-treatment aligns the phase rapidly, except for a striking
network of oily-streak defects, which anneals out much more slowly. If
spherical particles several microns in diameter are dispersed in the lamellar
medium, part of the defect network persists under shear-treatment, its nodes
anchored on the particles. The sample as prepared has substantial storage and
loss moduli, both of which decrease steadily under shear-treatment. Adding
particles enhances the moduli and retards their decay under shear. The data for
the frequency-dependent storage modulus after various durations of
shear-treatment can be scaled to collapse onto a single curve. The elasticity
and dissipation in these samples thus arises mainly from the defect network,
not directly from the smectic elasticity and hydrodynamics.Comment: 19 pages inclusive of 12 PostScript figures, uses revtex, psfrag and
epsfig. Revised version, accepted for publication in Euro. Phys. J. B, with
improved images of defect structure and theoretical estimates of network
elasticity and scalin
Constitutive modeling for isotropic materials
The unified constitutive theories for application to typical isotropic cast nickel base supperalloys used for air-cooled turbine blades were evaluated. The specific modeling aspects evaluated were: uniaxial, monotonic, cyclic, creep, relaxation, multiaxial, notch, and thermomechanical behavior. Further development of the constitutive theories to model thermal history effects, refinement of the material test procedures, evaluation of coating effects, and verification of the models in an alternate material will be accomplished in a follow-on for this base program
Structure based de novo design of IspD inhibitors as anti-tubercular agents
Tuberculosis is one of the leading contagious diseases, caused by Mycobacterium tuberculosis. Despite improvements in anti-tubercular agents, it remains one of the most prevalent infectious diseases worldwide, responsible for a total of 1.6 million deaths annually. The emergence of multidrug resistant strains highlighted the need of discovering novel drug targets for the development of anti-tubercular agents. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD) is an enzyme involved in MEP pathway for isoprenoid biosynthesis, which is considered an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammals. In the present study, we have employed structure based drug design approach to develop novel and potent inhibitors for IspD receptor. To explore binding affinity and hydrogen bond interaction between the ligand and active site of IspD receptor, docking studies were performed. ADMET and synthetic accessibility filters were used to screen designed molecules. Finally, ten compounds were selected and subsequently submitted for the synthesis and in vitro studies as IspD inhibitors
Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal
Using laser tweezers and fluorescence confocal polarizing microscopy, we
study colloidal interactions of solid microspheres in the nematic bulk caused
by elastic distortions around the particles with strong tangential surface
anchoring. The particles aggregate into chains directed at about 30 degrees to
the far field director and, at higher concentrations, form complex kinetically
trapped structures. We characterize the distance and angular dependencies of
the colloidal interaction forces.Comment: 6 pages, 5 figure
A Dynamic Renormalization Group Study of Active Nematics
We carry out a systematic construction of the coarse-grained dynamical
equation of motion for the orientational order parameter for a two-dimensional
active nematic, that is a nonequilibrium steady state with uniaxial, apolar
orientational order. Using the dynamical renormalization group, we show that
the leading nonlinearities in this equation are marginally \textit{irrelevant}.
We discover a special limit of parameters in which the equation of motion for
the angle field of bears a close relation to the 2d stochastic Burgers
equation. We find nevertheless that, unlike for the Burgers problem, the
nonlinearity is marginally irrelevant even in this special limit, as a result
of of a hidden fluctuation-dissipation relation. 2d active nematics therefore
have quasi-long-range order, just like their equilibrium counterpartsComment: 31 pages 6 figure
Lense-Thirring Precession in Pleba\'nski-Demia\'nski spacetimes
An exact expression of Lense-Thirring precession rate is derived for
non-extremal and extremal Pleba\'nski-Demia\'nski spacetimes. This formula is
used to find the exact Lense-Thirring precession rate in various axisymmetric
spacetimes, like: Kerr, Kerr-Newman, Kerr-de Sitter etc. We also show, if the
Kerr parameter vanishes in Pleba\'nski-Demia\'nski(PD) spacetime, the
Lense-Thirring precession does not vanish due to the existence of NUT charge.
To derive the LT precession rate in extremal Pleba\'nski-Demia\'nski we first
derive the general extremal condition for PD spacetimes. This general result
could be applied to get the extremal limit in any stationary and axisymmetric
spacetimes.Comment: 9 pages, Some special modifications are mad
Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic and smectic correlations
We study experimentally the nonequilibrium phase behaviour of a horizontal
monolayer of macroscopic rods. The motion of the rods in two dimensions is
driven by vibrations in the vertical direction. Aside from the control
variables of packing fraction and aspect ratio that are typically explored in
molecular liquid crystalline systems, due to the macroscopic size of the
particles we are also able to investigate the effect of the precise shape of
the particle on the steady states of this driven system. We find that the shape
plays an important role in determining the nature of the orientational ordering
at high packing fraction. Cylindrical particles show substantial tetratic
correlations over a range of aspect ratios where spherocylinders have
previously been shown by Bates et al (JCP 112, 10034 (2000)) to undergo
transitions between isotropic and nematic phases. Particles that are thinner at
the ends (rolling pins or bails) show nematic ordering over the same range of
aspect ratios, with a well-established nematic phase at large aspect ratio and
a defect-ridden nematic state with large-scale swirling motion at small aspect
ratios. Finally, long-grain, basmati rice, whose geometry is intermediate
between the two shapes above, shows phases with strong indications of smectic
order.Comment: 18 pages and 13 eps figures, references adde
Spectrally Resolved Flux Derived from Collocated AIRS and CERES Observations and its Application in Model Validation
Spectrally resolved outgoing IR flux, the integrand of the outgoing longwave radiation (OLR), has its unique value in evaluating model simulations. Here we describe an algorithm of deriving such clear-sky outgoing spectral flux through the whole IR region from the collocated Atmospheric Infrared Sounder (AIRS) and the Clouds & the Earth's Radiant Energy System (CERES) measurements over the tropical oceans. Based on the scene types and corresponding angular distribution models (ADMs) used in the CERES Single Satellite Footprint (SSF) dataset, spectrally-dependent ADMs are developed and used to estimate the spectral flux at each AIRS channel. A multivariate linear prediction scheme is then used to estimate spectral fluxes at frequencies not covered by the AIRS instrument. The whole algorithm is validated using synthetic spectra as well as the CERES OLR measurements. Using the GFDL AM2 model simulation as a case study, the application of the derived clear-sky outgoing spectral flux in model evaluation is illustrated. By comparing the observed and simulated spectral flux in 2004, compensating errors in the simulated OLR from different absorption bands can be revealed, so does the errors from frequencies within a given absorption band. Discrepancies between the simulated and observed spatial distributions and seasonal evolutions of the spectral fluxes at different spectral ranges are further discussed. The methodology described in this study can be applied to other surface types as well as cloudy-sky observations and corresponding model evaluations
- …
