14 research outputs found
Speckle Imaging of Spin Fluctuations in a Strongly Interacting Fermi Gas
Spin fluctuations and density fluctuations are studied for a two-component
gas of strongly interacting fermions along the BEC-BCS crossover. This is done
by in-situ imaging of dispersive speckle patterns. Compressibility and magnetic
susceptibility are determined from the measured fluctuations. This new
sensitive method easily resolves a tenfold suppression of spin fluctuations
below shot noise due to pairing, and can be applied to novel magnetic phases in
optical lattices
Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas
We study density profiles of an ideal Fermi gas and observe Pauli suppression
of density fluctuations (atom shot noise) for cold clouds deep in the quantum
degenerate regime. Strong suppression is observed for probe volumes containing
more than 10,000 atoms. Measuring the level of suppression provides sensitive
thermometry at low temperatures. After this method of sensitive noise
measurements has been validated with an ideal Fermi gas, it can now be applied
to characterize phase transitions in strongly correlated many-body systems.Comment: minor edit: fixed technical problem with arxiv's processing of .eps
figur
Seamless Learning als Ansatz zum Umgang mit flexiblem Lehren und Lernen : Erfahrungs-bericht aus dem Seamless Learning Lab
Seamless Learning richtet den Blick auf eine Herausforderung flexiblen Lernens – den Umstand, dass Lernen in verschiedenen Kontexten stattfinden kann. Lernen über Kontexte hinweg bietet Chancen (z. B. die Verknüpfung von formalem Wissen mit der Alltagserfahrung), bringt aber auch Risiken (Fragmentierung der Lernerfahrung) mit sich. In einem laufenden EU-geförderten Projekt werden mittels eines „Design Based Research“-Ansatzes sieben „Seamless Learning“-Konzepte entwickelt, implementiert und erforscht. Diese Konzeption ist sehr beratungsintensiv. Für die langfristige Sicherung der Ergebnisse und eine mögliche Skalierung wird ein frei zugängliches Beratungskonzept inklusive IT-Unterstützung (Beratungs-Framework) entwickelt. In diesem Artikel wird das Projekt kurz präsentiert und theoretisch eingeordnet; die Erfahrungen und Erkenntnisse aus der Entwicklung der „Seamless Learning“-Konzepte vorgestellt, woraus anschließend die Grundlagen für das Beratungskonzept und -tool abgeleitet werden
Array programming with NumPy.
Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves1 and in the first imaging of a black hole2. Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis
Recommended from our members
Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
Modelling the key drivers of an aerial Phytophthora foliar disease epidemic, from the needles to the whole plant.
Understanding the epidemiology of infectious diseases in a host population is a major challenge in forestry. Radiata pine plantations in New Zealand are impacted by a foliar disease, red needle cast (RNC), caused by Phytophthora pluvialis. This pathogen is dispersed by water splash with polycyclic infection affecting the lower part of the tree canopy. In this study, we extended an SI (Susceptible-Infectious) model presented for RNC to analyse the key epidemiological drivers. We conducted two experiments to empirically fit the extended model: a detached-needle assay and an in vivo inoculation. We used the detached-needle assay data to compare resistant and susceptible genotypes, and the in vivo inoculation data was used to inform sustained infection of the whole plant. We also compared isolations and real-time quantitative PCR (qPCR) to assess P. pluvialis infection. The primary infection rate and the incubation time were similar for susceptible and resistant genotypes. The pathogen death rate was 2.5 times higher for resistant than susceptible genotypes. Further, external proliferation of mycelium and sporangia were only observed on 28% of the resistant ramets compared to 90% of the susceptible ones. Detection methods were the single most important factor influencing parameter estimates of the model, giving qualitatively different epidemic outputs. In the early stages of infection, qPCR proved to be more efficient than isolations but the reverse was true at later points in time. Isolations were not influenced by the presence of lesions in the needles, while 19% of lesioned needle maximized qPCR detection. A primary infection peak identified via qPCR occurred at 4 days after inoculation (dai) with a secondary peak observed 22 dai. Our results have important implications to the management of RNC, by highlighting the main differences in the response of susceptible and resistant genotypes, and comparing the most common assessment methods to detect RNC epidemics
Seamless Learning als Ansatz zum Umgang mit flexiblem Lehren und Lernen : Erfahrungs-bericht aus dem Seamless Learning Lab
Seamless Learning richtet den Blick auf eine Herausforderung flexiblen Lernens – den Umstand, dass Lernen in verschiedenen Kontexten stattfinden kann. Lernen über Kontexte hinweg bietet Chancen (z. B. die Verknüpfung von formalem Wissen mit der Alltagserfahrung), bringt aber auch Risiken (Fragmentierung der Lernerfahrung) mit sich. In einem laufenden EU-geförderten Projekt werden mittels eines „Design Based Research“-Ansatzes sieben „Seamless Learning“-Konzepte entwickelt, implementiert und erforscht. Diese Konzeption ist sehr beratungsintensiv. Für die langfristige Sicherung der Ergebnisse und eine mögliche Skalierung wird ein frei zugängliches Beratungskonzept inklusive IT-Unterstützung (Beratungs-Framework) entwickelt. In diesem Artikel wird das Projekt kurz präsentiert und theoretisch eingeordnet; die Erfahrungen und Erkenntnisse aus der Entwicklung der „Seamless Learning“-Konzepte vorgestellt, woraus anschließend die Grundlagen für das Beratungskonzept und -tool abgeleitet werden
Scipy Lecture Notes: One document to learn numerics, science, and data with Python
International audienceTutorials on the scientific Python ecosystem: a quick introduction to central tools and techniques. The different chapters each correspond to a 1 to 2 hours course with increasing level of expertise, from beginner to expert
statsmodels/statsmodels: Release 0.14.1
<p>This is a bug fix and future-proofing release that contains all bug fixes that have been applied since 0.14.0 was released.</p>
<p>There are no enhancements or changes to the statsmdoels API.</p>
scipy/scipy: SciPy 1.12.0
<h1>SciPy 1.12.0 Release Notes</h1>
<p>SciPy <code>1.12.0</code> is the culmination of <code>6</code> months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and better
documentation. There have been a number of deprecations and API changes
in this release, which are documented below. All users are encouraged to
upgrade to this release, as there are a large number of bug-fixes and
optimizations. Before upgrading, we recommend that users check that
their own code does not use deprecated SciPy functionality (to do so,
run your code with <code>python -Wd</code> and check for <code>DeprecationWarning</code> s).
Our development attention will now shift to bug-fix releases on the
1.12.x branch, and on adding new features on the main branch.</p>
<p>This release requires Python <code>3.9+</code> and NumPy <code>1.22.4</code> or greater.</p>
<p>For running on PyPy, PyPy3 <code>6.0+</code> is required.</p>
<h1>Highlights of this release</h1>
<ul>
<li>Experimental support for the array API standard has been added to part of
<code>scipy.special</code>, and to all of <code>scipy.fft</code> and <code>scipy.cluster</code>. There are
likely to be bugs and early feedback for usage with CuPy arrays, PyTorch
tensors, and other array API compatible libraries is appreciated. Use the
<code>SCIPY_ARRAY_API</code> environment variable for testing.</li>
<li>A new class, <code>ShortTimeFFT</code>, provides a more versatile implementation of the
short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-)
spectrogram. It utilizes an improved algorithm for calculating the ISTFT.</li>
<li>Several new constructors have been added for sparse arrays, and many operations
now additionally support sparse arrays, further facilitating the migration
from sparse matrices.</li>
<li>A large portion of the <code>scipy.stats</code> API now has improved support for handling
<code>NaN</code> values, masked arrays, and more fine-grained shape-handling. The
accuracy and performance of a number of <code>stats</code> methods have been improved,
and a number of new statistical tests and distributions have been added.</li>
</ul>
<h1>New features</h1>
<h1><code>scipy.cluster</code> improvements</h1>
<ul>
<li>Experimental support added for the array API standard; PyTorch tensors,
CuPy arrays and array API compatible array libraries are now accepted
(GPU support is limited to functions with pure Python implementations).
CPU arrays which can be converted to and from NumPy are supported
module-wide and returned arrays will match the input type.
This behaviour is enabled by setting the <code>SCIPY_ARRAY_API</code> environment
variable before importing <code>scipy</code>. This experimental support is still
under development and likely to contain bugs - testing is very welcome.</li>
</ul>
<h1><code>scipy.fft</code> improvements</h1>
<ul>
<li>Experimental support added for the array API standard; functions which are
part of the <code>fft</code> array API standard extension module, as well as the
Fast Hankel Transforms and the basic FFTs which are not in the extension
module, now accept PyTorch tensors, CuPy arrays and array API compatible
array libraries. CPU arrays which can be converted to and from NumPy arrays
are supported module-wide and returned arrays will match the input type.
This behaviour is enabled by setting the <code>SCIPY_ARRAY_API</code> environment
variable before importing <code>scipy</code>. This experimental support is still under
development and likely to contain bugs - testing is very welcome.</li>
</ul>
<h1><code>scipy.integrate</code> improvements</h1>
<ul>
<li>Added <code>scipy.integrate.cumulative_simpson</code> for cumulative quadrature
from sampled data using Simpson's 1/3 rule.</li>
</ul>
<h1><code>scipy.interpolate</code> improvements</h1>
<ul>
<li>New class <code>NdBSpline</code> represents tensor-product splines in N dimensions.
This class only knows how to evaluate a tensor product given coefficients
and knot vectors. This way it generalizes <code>BSpline</code> for 1D data to N-D, and
parallels <code>NdPPoly</code> (which represents N-D tensor product polynomials).
Evaluations exploit the localized nature of b-splines.</li>
<li><code>NearestNDInterpolator.__call__</code> accepts <code>**query_options</code>, which are
passed through to the <code>KDTree.query</code> call to find nearest neighbors. This
allows, for instance, to limit the neighbor search distance and parallelize
the query using the <code>workers</code> keyword.</li>
<li><code>BarycentricInterpolator</code> now allows computing the derivatives.</li>
<li>It is now possible to change interpolation values in an existing
<code>CloughTocher2DInterpolator</code> instance, while also saving the barycentric
coordinates of interpolation points.</li>
</ul>
<h1><code>scipy.linalg</code> improvements</h1>
<ul>
<li>Access to new low-level LAPACK functions is provided via <code>dtgsyl</code> and
<code>stgsyl</code>.</li>
</ul>
<h1><code>scipy.optimize</code> improvements</h1>
<ul>
<li><code>scipy.optimize.isotonic_regression</code> has been added to allow nonparametric isotonic
regression.</li>
<li><code>scipy.optimize.nnls</code> is rewritten in Python and now implements the so-called
fnnls or fast nnls, making it more efficient for high-dimensional problems.</li>
<li>The result object of <code>scipy.optimize.root</code> and <code>scipy.optimize.root_scalar</code>
now reports the method used.</li>
<li>The <code>callback</code> method of <code>scipy.optimize.differential_evolution</code> can now be
passed more detailed information via the <code>intermediate_results</code> keyword
parameter. Also, the evolution <code>strategy</code> now accepts a callable for
additional customization. The performance of <code>differential_evolution</code> has
also been improved.</li>
<li><code>scipy.optimize.minimize</code> method <code>Newton-CG</code> now supports functions that
return sparse Hessian matrices/arrays for the <code>hess</code> parameter and is slightly
more efficient.</li>
<li><code>scipy.optimize.minimize</code> method <code>BFGS</code> now accepts an initial estimate for the
inverse of the Hessian, which allows for more efficient workflows in some
circumstances. The new parameter is <code>hess_inv0</code>.</li>
<li><code>scipy.optimize.minimize</code> methods <code>CG</code>, <code>Newton-CG</code>, and <code>BFGS</code> now accept
parameters <code>c1</code> and <code>c2</code>, allowing specification of the Armijo and curvature rule
parameters, respectively.</li>
<li><code>scipy.optimize.curve_fit</code> performance has improved due to more efficient memoization
of the callable function.</li>
</ul>
<h1><code>scipy.signal</code> improvements</h1>
<ul>
<li><code>freqz</code>, <code>freqz_zpk</code>, and <code>group_delay</code> are now more accurate
when <code>fs</code> has a default value.</li>
<li>The new class <code>ShortTimeFFT</code> provides a more versatile implementation of the
short-time Fourier transform (STFT), its inverse (ISTFT) as well as the (cross-)
spectrogram. It utilizes an improved algorithm for calculating the ISTFT based on
dual windows and provides more fine-grained control of the parametrization especially
in regard to scaling and phase-shift. Functionality was implemented to ease
working with signal and STFT chunks. A section has been added to the "SciPy User Guide"
providing algorithmic details. The functions <code>stft</code>, <code>istft</code> and <code>spectrogram</code>
have been marked as legacy.</li>
</ul>
<h1><code>scipy.sparse</code> improvements</h1>
<ul>
<li><code>sparse.linalg</code> iterative solvers <code>sparse.linalg.cg</code>,
<code>sparse.linalg.cgs</code>, <code>sparse.linalg.bicg</code>, <code>sparse.linalg.bicgstab</code>,
<code>sparse.linalg.gmres</code>, and <code>sparse.linalg.qmr</code> are rewritten in Python.</li>
<li>Updated vendored SuperLU version to <code>6.0.1</code>, along with a few additional
fixes.</li>
<li>Sparse arrays have gained additional constructors: <code>eye_array</code>,
<code>random_array</code>, <code>block_array</code>, and <code>identity</code>. <code>kron</code> and <code>kronsum</code>
have been adjusted to additionally support operation on sparse arrays.</li>
<li>Sparse matrices now support a transpose with <code>axes=(1, 0)</code>, to mirror
the <code>.T</code> method.</li>
<li><code>LaplacianNd</code> now allows selection of the largest subset of eigenvalues,
and additionally now supports retrieval of the corresponding eigenvectors.
The performance of <code>LaplacianNd</code> has also been improved.</li>
<li>The performance of <code>dok_matrix</code> and <code>dok_array</code> has been improved,
and their inheritance behavior should be more robust.</li>
<li><code>hstack</code>, <code>vstack</code>, and <code>block_diag</code> now work with sparse arrays, and
preserve the input sparse type.</li>
<li>A new function, <code>scipy.sparse.linalg.matrix_power</code>, has been added, allowing
for exponentiation of sparse arrays.</li>
</ul>
<h1><code>scipy.spatial</code> improvements</h1>
<ul>
<li>Two new methods were implemented for <code>spatial.transform.Rotation</code>:
<code>__pow__</code> to raise a rotation to integer or fractional power and
<code>approx_equal</code> to check if two rotations are approximately equal.</li>
<li>The method <code>Rotation.align_vectors</code> was extended to solve a constrained
alignment problem where two vectors are required to be aligned precisely.
Also when given a single pair of vectors, the algorithm now returns the
rotation with minimal magnitude, which can be considered as a minor
backward incompatible change.</li>
<li>A new representation for <code>spatial.transform.Rotation</code> called Davenport
angles is available through <code>from_davenport</code> and <code>as_davenport</code> methods.</li>
<li>Performance improvements have been added to <code>distance.hamming</code> and
<code>distance.correlation</code>.</li>
<li>Improved performance of <code>SphericalVoronoi</code> <code>sort_vertices_of_regions</code>
and two dimensional area calculations.</li>
</ul>
<h1><code>scipy.special</code> improvements</h1>
<ul>
<li>Added <code>scipy.special.stirling2</code> for computation of Stirling numbers of the
second kind. Both exact calculation and an asymptotic approximation
(the default) are supported via <code>exact=True</code> and <code>exact=False</code> (the
default) respectively.</li>
<li>Added <code>scipy.special.betaincc</code> for computation of the complementary
incomplete Beta function and <code>scipy.special.betainccinv</code> for computation of
its inverse.</li>
<li>Improved precision of <code>scipy.special.betainc</code> and <code>scipy.special.betaincinv</code>.</li>
<li>Experimental support added for alternative backends: functions
<code>scipy.special.log_ndtr</code>, <code>scipy.special.ndtr</code>, <code>scipy.special.ndtri</code>,
<code>scipy.special.erf</code>, <code>scipy.special.erfc</code>, <code>scipy.special.i0</code>,
<code>scipy.special.i0e</code>, <code>scipy.special.i1</code>, <code>scipy.special.i1e</code>,
<code>scipy.special.gammaln</code>, <code>scipy.special.gammainc</code>, <code>scipy.special.gammaincc</code>,
<code>scipy.special.logit</code>, and <code>scipy.special.expit</code> now accept PyTorch tensors
and CuPy arrays. These features are still under development and likely to
contain bugs, so they are disabled by default; enable them by setting a
<code>SCIPY_ARRAY_API</code> environment variable to <code>1</code> before importing <code>scipy</code>.
Testing is appreciated!</li>
</ul>
<h1><code>scipy.stats</code> improvements</h1>
<ul>
<li>Added <code>scipy.stats.quantile_test</code>, a nonparametric test of whether a
hypothesized value is the quantile associated with a specified probability.
The <code>confidence_interval</code> method of the result object gives a confidence
interval of the quantile.</li>
<li><code>scipy.stats.sampling.FastGeneratorInversion</code> provides a convenient
interface to fast random sampling via numerical inversion of distribution
CDFs.</li>
<li><code>scipy.stats.geometric_discrepancy</code> adds geometric/topological discrepancy
metrics for random samples.</li>
<li><code>scipy.stats.multivariate_normal</code> now has a <code>fit</code> method for fitting
distribution parameters to data via maximum likelihood estimation.</li>
<li><code>scipy.stats.bws_test</code> performs the Baumgartner-Weiss-Schindler test of
whether two-samples were drawn from the same distribution.</li>
<li><code>scipy.stats.jf_skew_t</code> implements the Jones and Faddy skew-t distribution.</li>
<li><code>scipy.stats.anderson_ksamp</code> now supports a permutation version of the test
using the <code>method</code> parameter.</li>
<li>The <code>fit</code> methods of <code>scipy.stats.halfcauchy</code>, <code>scipy.stats.halflogistic</code>, and
<code>scipy.stats.halfnorm</code> are faster and more accurate.</li>
<li><code>scipy.stats.beta</code> <code>entropy</code> accuracy has been improved for extreme values of
distribution parameters.</li>
<li>The accuracy of <code>sf</code> and/or <code>isf</code> methods have been improved for
several distributions: <code>scipy.stats.burr</code>, <code>scipy.stats.hypsecant</code>,
<code>scipy.stats.kappa3</code>, <code>scipy.stats.loglaplace</code>, <code>scipy.stats.lognorm</code>,
<code>scipy.stats.lomax</code>, <code>scipy.stats.pearson3</code>, <code>scipy.stats.rdist</code>, and
<code>scipy.stats.pareto</code>.</li>
<li>The following functions now support parameters <code>axis</code>, <code>nan_policy</code>, and
<code>keep_dims</code>: <code>scipy.stats.entropy</code>, <code>scipy.stats.differential_entropy</code>,
<code>scipy.stats.variation</code>, <code>scipy.stats.ansari</code>, <code>scipy.stats.bartlett</code>,
<code>scipy.stats.levene</code>, <code>scipy.stats.fligner</code>, <code>scipy.stats.circmean</code>,
<code>scipy.stats.circvar</code>, <code>scipy.stats.circstd</code>, <code>scipy.stats.tmean</code>,
<code>scipy.stats.tvar</code>, <code>scipy.stats.tstd</code>, <code>scipy.stats.tmin</code>, <code>scipy.stats.tmax</code>,
and <code>scipy.stats.tsem</code>.</li>
<li>The <code>logpdf</code> and <code>fit</code> methods of <code>scipy.stats.skewnorm</code> have been improved.</li>
<li>The beta negative binomial distribution is implemented as <code>scipy.stats.betanbinom</code>.</li>
<li>Improved performance of <code>scipy.stats.invwishart</code> <code>rvs</code> and <code>logpdf</code>.</li>
<li>A source of intermediate overflow in <code>scipy.stats.boxcox_normmax</code> with
<code>method='mle'</code> has been eliminated, and the returned value of <code>lmbda</code> is
constrained such that the transformed data will not overflow.</li>
<li><code>scipy.stats.nakagami</code> <code>stats</code> is more accurate and reliable.</li>
<li>A source of intermediate overflow in <code>scipy.norminvgauss.pdf</code> has been eliminated.</li>
<li>Added support for masked arrays to <code>scipy.stats.circmean</code>, <code>scipy.stats.circvar</code>,
<code>scipy.stats.circstd</code>, and <code>scipy.stats.entropy</code>.</li>
<li><code>scipy.stats.dirichlet</code> has gained a new covariance (<code>cov</code>) method.</li>
<li>Improved accuracy of <code>entropy</code> method of <code>scipy.stats.multivariate_t</code> for large
degrees of freedom.</li>
<li><code>scipy.stats.loggamma</code> has an improved <code>entropy</code> method.</li>
</ul>
<h1>Deprecated features</h1>
<ul>
<li><p>Error messages have been made clearer for objects that don't exist in the
public namespace and warnings sharpened for private attributes that are not
supposed to be imported at all.</p>
</li>
<li><p><code>scipy.signal.cmplx_sort</code> has been deprecated and will be removed in
SciPy 1.15. A replacement you can use is provided in the deprecation message.</p>
</li>
<li><p>Values the the argument <code>initial</code> of <code>scipy.integrate.cumulative_trapezoid</code>
other than <code>0</code> and <code>None</code> are now deprecated.</p>
</li>
<li><p><code>scipy.stats.rvs_ratio_uniforms</code> is deprecated in favour of
<code>scipy.stats.sampling.RatioUniforms</code></p>
</li>
<li><p><code>scipy.integrate.quadrature</code> and <code>scipy.integrate.romberg</code> have been
deprecated due to accuracy issues and interface shortcomings. They will
be removed in SciPy 1.15. Please use <code>scipy.integrate.quad</code> instead.</p>
</li>
<li><p>Coinciding with upcoming changes to function signatures (e.g. removal of a
deprecated keyword), we are deprecating positional use of keyword arguments
for the affected functions, which will raise an error starting with
SciPy 1.14. In some cases, this has delayed the originally announced
removal date, to give time to respond to the second part of the deprecation.
Affected functions are:</p>
<ul>
<li><code>linalg.{eigh, eigvalsh, pinv}</code></li>
<li><code>integrate.simpson</code></li>
<li><code>signal.{firls, firwin, firwin2, remez}</code></li>
<li><code>sparse.linalg.{bicg, bicgstab, cg, cgs, gcrotmk, gmres, lgmres, minres, qmr, tfqmr}</code></li>
<li><code>special.comb</code></li>
<li><code>stats.kendalltau</code></li>
</ul>
</li>
<li><p>All wavelet functions have been deprecated, as PyWavelets provides suitable
implementations; affected functions are: <code>signal.{daub, qmf, cascade, morlet, morlet2, ricker, cwt}</code></p>
</li>
<li><p><code>scipy.integrate.trapz</code>, <code>scipy.integrate.cumtrapz</code>, and <code>scipy.integrate.simps</code> have
been deprecated in favour of <code>scipy.integrate.trapezoid</code>, <code>scipy.integrate.cumulative_trapezoid</code>,
and <code>scipy.integrate.simpson</code> respectively and will be removed in SciPy 1.14.</p&g