19 research outputs found

    Genomic and molecular characterization of preterm birth.

    Get PDF
    Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology

    Altered endothelin receptor expression in prehepatic portal hypertension predisposes the liver to microcirculatory dysfunction in rats

    No full text
    BACKGROUND/AIMS: Endothelin (ET) is one of the most active vascular regulators in the liver. It is unknown how partial portal vein ligation (PPVL) induced prehepatic portal hypertension influences the response of the liver to ET and its agonists. Therefore, this study was conducted to determine the expression of ET receptors and its functional significance after PPVL. METHODS: Competitive receptor binding study and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) were performed using liver homogenates after 2 weeks of PPVL or sham operation in rats. Hepatic microcirculation was evaluated in vivo using intravital microscopy. RESULTS: Although there was no significant difference in dissociation constant (Kd) and total amount of receptors (Bmax) between sham and PPVL, the proportion of ET(B) receptor was significantly increased in PPVL. RT-PCR analysis confirmed the up-regulation of ET(B) receptors demonstrated by the competitive receptor binding assay. In the functional study, infusion of ET(B) agonist (IRL 1620) in a low dosage did not change the hepatic microcirculation in sham but strongly constricted the sinusoids leading to a reduction of sinusoidal perfusion in PPVL. CONCLUSIONS: These results suggest that prehepatic portal hypertension may predispose the hepatic microcirculation to dysregulation in stress conditions where ET is upregulated

    Hepatic arterial flow becomes the primary supply of sinusoids following partial portal vein ligation in rats

    No full text
    BACKGROUND AND AIM: Partial portal vein ligation (PPVL) is a commonly used procedure to induce prehepatic portal hypertension in animal models. The aim of this study was to test the hypothesis that the hepatic arterial flow becomes the primary source feeding the sinusoids in the liver after PPVL. METHODS: Sprague-Dawley rats underwent either sham operation or partial portal vein ligation (PPVL). The number of vessels in the liver at 2 weeks postoperatively was determined by factor VIII immunolocalization and the gene expression of angiogenic factors was assessed by RT-PCR. The total hepatic arterial supply to the liver was measured using the fluorescent microsphere injection technique. To further test the hypothesis, two additional groups of rats underwent hepatic artery ligation (HAL) or PPVL plus HAL (PPHAL). The integrity of hepatic microcirculation was then evaluated in all four groups by intravital microscopy. RESULTS: At 2 weeks after operation, the number of vessels detected by factor VIII staining was significantly higher in PPVL compared to sham. Densitometric analysis of RT-PCR bands revealed a significant increase of vascular endothelial growth factor gene expression in PPVL compared to sham. Arterial flow to the liver measured by fluorescent microspheres was increased by 190% in PPVL compared to sham. When all four groups were compared, no prominent histological abnormality was observed in sham, HAL, and PPVL groups; however, PPHAL livers showed focal necrosis and inflammatory cell infiltration around the portal triads. Additionally, only the PPHAL livers showed a decreased sinusoidal diameter and significantly lower perfusion index (PPHAL 42.9+/-6.1; sham 85.7+/-7.0, PPVL 80.2+/-6.5, HAL 70.9+/-4.5). CONCLUSIONS: These results suggest that the hepatic artery flow becomes the primary source for the blood supply of sinusoids and the compensatory change in the hepatic arterial system plays a critical role in maintaining microcirculatory perfusion following the restriction of the portal vein flow by PPVL

    Bone Marrow Stromal Cells Attenuate Lung Injury in a Murine Model of Neonatal Chronic Lung Disease

    No full text
    Rationale: Neonatal chronic lung disease, known as bronchopulmonary dysplasia (BPD), remains a serious complication of prematurity despite advances in the treatment of extremely low birth weight infants

    Prenatal and Peripartum Exposure to Antibiotics and Cesarean Section Delivery Are Associated with Differences in Diversity and Composition of the Infant Meconium Microbiome

    No full text
    The meconium microbiome may provide insight into intrauterine and peripartum exposures and the very earliest intestinal pioneering microbes. Prenatal antibiotics have been associated with later obesity in children, which is thought to be driven by microbiome dependent mechanisms. However, there is little data regarding associations of prenatal or peripartum antibiotic exposure, with or without cesarean section (CS), with the features of the meconium microbiome. In this study, 16S ribosomal RNA gene sequencing was performed on bacterial DNA of meconium samples from 105 infants in a birth cohort study. After multivariable adjustment, delivery mode (p = 0.044), prenatal antibiotic use (p = 0.005) and peripartum antibiotic use (p < 0.001) were associated with beta diversity of the infant meconium microbiome. CS (vs. vaginal delivery) and peripartum antibiotics were also associated with greater alpha diversity of the meconium microbiome (Shannon and Simpson, p < 0.05). Meconium from infants born by CS (vs. vaginal delivery) had lower relative abundance of the genus Escherichia (p < 0.001). Prenatal antibiotic use and peripartum antibiotic use (both in the overall analytic sample and when restricting to vaginally delivered infants) were associated with differential abundance of several bacterial taxa in the meconium. Bacterial taxa in the meconium microbiome were also differentially associated with infant excess weight at 12 months of age, however, sample size was limited for this comparison. In conclusion, prenatal and peripartum antibiotic use along with CS delivery were associated with differences in the diversity and composition of the meconium microbiome. Whether or not these differences in the meconium microbiome portend risk for long-term health outcomes warrants further exploration

    Comparison of Infant Gut and Skin Microbiota, Resistome and Virulome Between Neonatal Intensive Care Unit (NICU) Environments

    No full text
    Background: There is a growing move to provide care for premature infants in a single family, private room neonatal intensive care unit (NICU) in place of the traditional shared space, open bay NICU. The resultant effect on the developing neonatal microbiota is unknown.Study Design: Stool and groin skin swabs were collected from infants in a shared-space NICU (old NICU) and a single-family room NICU (new NICU) on the same hospital campus. Metagenomic sequencing was performed and data analyzed by CosmosID bioinformatics software package.Results: There were no significant differences between the cohorts in gestational age, length of stay, and delivery mode; infants in the old NICU received significantly more antibiotics (p = 0.03). Differentially abundant antimicrobial resistance genes and virulence associated genes were found between the cohorts in stool and skin, with more differentially abundant antimicrobial resistance genes in the new NICU. The entire bacterial microbiota analyzed to the genus level significantly differed between cohorts in skin (p = 0.0001) but not in stool samples. There was no difference in alpha diversity between the two cohorts. DNA viruses and fungi were detected but did not differ between cohorts.Conclusion: Differences were seen in the resistome and virulome between the two cohorts with more differentially abundant antimicrobial resistance genes in the new NICU. This highlights the influence that different NICU environments can have on the neonatal microbiota. Whether the differences were due to the new NICU being a single-family NICU or located in a newly constructed building warrants exploration. Long term health outcomes from the differences observed must be followed longitudinally
    corecore