159 research outputs found

    High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Get PDF
    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.Iran National Science Foundation (INSF

    The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates

    Get PDF
    SummaryIt is generally assumed that sensitivity to different stimulus orientations is mapped in a globally equivalent fashion across primate visual cortex, at a spatial scale larger than that of orientation columns. However, some evidence predicts instead that radial orientations should produce higher activity than other orientations, throughout visual cortex. Here, this radial orientation bias was robustly confirmed using (1) human psychophysics, plus fMRI in (2) humans and (3) behaving monkeys. In visual cortex, fMRI activity was at least 20% higher in the retinotopic representations of polar angle which corresponded to the radial stimulus orientations (relative to tangential). In a global demonstration of this, we activated complementary retinotopic quadrants of visual cortex by simply changing stimulus orientation, without changing stimulus location in the visual field. This evidence reveals a neural link between orientation sensitivity and the cortical retinotopy, which have previously been considered independent

    A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex

    Get PDF
    Technologies for silencing the electrical activity of genetically targeted neurons in the brain are important for assessing the contribution of specific cell types and pathways toward behaviors and pathologies. Recently we found that archaerhodopsin-3 from Halorubrum sodomense (Arch), a light-driven outward proton pump, when genetically expressed in neurons, enables them to be powerfully, transiently, and repeatedly silenced in response to pulses of light. Because of the impressive characteristics of Arch, we explored the optogenetic utility of opsins with high sequence homology to Arch, from archaea of the Halorubrum genus. We found that the archaerhodopsin from Halorubrum strain TP009, which we named ArchT, could mediate photocurrents of similar maximum amplitude to those of Arch (∌900 pA in vitro), but with a >3-fold improvement in light sensitivity over Arch, most notably in the optogenetic range of 1–10 mW/mm2, equating to >2× increase in brain tissue volume addressed by a typical single optical fiber. Upon expression in mouse or rhesus macaque cortical neurons, ArchT expressed well on neuronal membranes, including excellent trafficking for long distances down neuronal axons. The high light sensitivity prompted us to explore ArchT use in the cortex of the rhesus macaque. Optical perturbation of ArchT-expressing neurons in the brain of an awake rhesus macaque resulted in a rapid and complete (∌100%) silencing of most recorded cells, with suppressed cells achieving a median firing rate of 0 spikes/s upon illumination. A small population of neurons showed increased firing rates at long latencies following the onset of light stimulation, suggesting the existence of a mechanism of network-level neural activity balancing. The powerful net suppression of activity suggests that ArchT silencing technology might be of great use not only in the causal analysis of neural circuits, but may have therapeutic applications

    Structural connectivity in a single case of progressive prosopagnosia: The role of the right inferior longitudinal fasciculus

    Get PDF
    Progressive prosopagnosia (PP) is a clinical syndrome characterized by a progressive and selective inability to recognize and identify faces of familiar people. Here we report a patient (G.S.) with PP, mainly related to a prominent deficit in recognition of familiar faces, without a semantic (cross-modal) impairment. An in-depth evaluation showed that his deficit extended to other classes of objects, both living and non-living. A follow-up neuropsychological assessment did not reveal substantial changes after about 1 year. Structural MRI showed predominant right temporal lobe atrophy. Diffusion tensor imaging was performed to elucidate structural connectivity of the inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF), the two major tracts that project through the core fusiform region to the anterior temporal and frontal cortices, respectively. Right ILF was markedly reduced in G.S., while left ILF and IFOFs were apparently preserved. These data are in favour of a crucial role of the neural circuit subserved by right ILF in the pathogenesis of PP

    The `Parahippocampal Place Area' Responds Selectively to High Spatial Frequencies

    Get PDF
    Defining the exact mechanisms by which the brain processes visual objects and scenes remains an unresolved challenge. Valuable clues to this process have emerged from the demonstration that clusters of neurons (“modules”) in inferior temporal cortex apparently respond selectively to specific categories of visual stimuli, such as places/scenes. However, the higher-order “category-selective” response could also reflect specific lower-level spatial factors. Here we tested this idea in multiple functional MRI experiments, in humans and macaque monkeys, by systematically manipulating the spatial content of geometrical shapes and natural images. These tests revealed that visual spatial discontinuities (as reflected by an increased response to high spatial frequencies) selectively activate a well-known place-selective region of visual cortex (the “parahippocampal place area”) in humans. In macaques, we demonstrate a homologous cortical area, and show that it also responds selectively to higher spatial frequencies. The parahippocampal place area may use such information for detecting object borders and scene details during spatial perception and navigation.National Institutes of Health (U.S.) (NIH Grant R01 MH6752)National Institutes of Health (U.S.) (grant R01 EY017081)Athinoula A. Martinos Center for Biomedical ImagingNational Center for Research Resources (U.S.)Mind Research Institut

    Contributions of feature shapes and surface cues to the recognition and neural representation of facial identity

    Get PDF
    A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity

    Organization of high-level visual cortex in human infants

    Get PDF
    How much of the structure of the human mind and brain is already specified at birth, and how much arises from experience? In this article, we consider the test case of extrastriate visual cortex, where a highly systematic functional organization is present in virtually every normal adult, including regions preferring behaviourally significant stimulus categories, such as faces, bodies, and scenes. Novel methods were developed to scan awake infants with fMRI, while they viewed multiple categories of visual stimuli. Here we report that the visual cortex of 4–6-month-old infants contains regions that respond preferentially to abstract categories (faces and scenes), with a spatial organization similar to adults. However, precise response profiles and patterns of activity across multiple visual categories differ between infants and adults. These results demonstrate that the large-scale organization of category preferences in visual cortex is adult-like within a few months after birth, but is subsequently refined through development.National Science Foundation (U.S.) (CCF-1231216

    Investigating holistic face processing within and outside of face-responsive brain regions

    Get PDF
    It has been shown that human faces are processed holistically (i.e. as indecomposable wholes, rather than by their component parts) and this holistic face processing is linked to brain activity in face-responsive brain regions. Although several brain regions outside of the face-responsive network are also sensitive to relational processing and perceptual grouping, whether these non-face-responsive regions contribute to holistic processing remains unclear. Here, we investigated holistic face processing in the composite face paradigm both within and outside of face-responsive brain regions. We recorded participants’ brain activity using fMRI while they performed a composite face task. Behavioural results indicate that participants tend to judge the same top face halves as different when they are aligned with different bottom face halves but not when they are misaligned, demonstrating a composite face effect. Neuroimaging results revealed significant differences in responses to aligned and misaligned faces in the lateral occipital complex (LOC), and trends in the anterior part of the fusiform face area (FFA2) and transverse occipital sulcus (TOS), suggesting that these regions are sensitive to holistic versus part-based face processing. Furthermore, the retrosplenial cortex (RSC) and the parahippocampal place area (PPA) showed a pattern of neural activity consistent with a holistic representation of face identity, which also correlated with the strength of the behavioural composite face effect. These results suggest that neural activity in brain regions both within and outside of the face-responsive network contributes to the composite-face effect
    • 

    corecore