141 research outputs found
Anatomical aspects of epidural and spinal analgesia
Regional anaesthesia seems to be the future of the anaesthesia in this century. The knowledge of the
anatomy of the epidural and other spinal spaces seems to play the crucial role in success of regional
anaesthesia. It's important in perioperative medicine and cancer pain treatment. Up to date there is not
too many datas considering anatomy of these compartments. Many of the results obtained by researchers
in the past are still not mentioned in the clinical textbooks. This article is an attempt to resolve this
problem.Regional anaesthesia seems to be the future of the anaesthesia in this century. The knowledge of the
anatomy of the epidural and other spinal spaces seems to play the crucial role in success of regional
anaesthesia. It's important in perioperative medicine and cancer pain treatment. Up to date there is not
too many datas considering anatomy of these compartments. Many of the results obtained by researchers
in the past are still not mentioned in the clinical textbooks. This article is an attempt to resolve this
problem
FlashCam: A fully digital camera for CTA telescopes
The future Cherenkov Telescope Array (CTA) will consist of several tens of
telescopes of different mirror sizes. CTA will provide next generation
sensitivity to very high energy photons from few tens of GeV to >100 TeV.
Several focal plane instrumentation options are currently being evaluated
inside the CTA consortium. In this paper, the current status of the FlashCam
prototyping project is described. FlashCam is based on a fully digital camera
readout concept and features a clean separation between photon detector plane
and signal digitization/triggering electronics.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy
Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184
Performance of a small size telescope (SST-1M) camera for gamma-ray astronomy with the Cherenkov Telescope Array
The foreseen implementations of the Small Size Telescopes (SST) in CTA will
provide unique insights into the highest energy gamma rays offering fundamental
means to discover and under- stand the sources populating the Galaxy and our
local neighborhood. Aiming at such a goal, the SST-1M is one of the three
different implementations that are being prototyped and tested for CTA. SST-1M
is a Davies-Cotton single mirror telescope equipped with a unique camera
technology based on SiPMs with demonstrated advantages over classical
photomultipliers in terms of duty-cycle. In this contribution, we describe the
telescope components, the camera, and the trigger and readout system. The
results of the commissioning of the camera using a dedicated test setup are
then presented. The performances of the camera first prototype in terms of
expected trigger rates and trigger efficiencies for different night-sky
background conditions are presented, and the camera response is compared to
end-to-end simulations.Comment: All CTA contributions at arXiv:1709.0348
Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices
A novel approach to tomographic data processing has been developed and
evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose
a system in which there is no need for powerful, local to the scanner
processing facility, capable to reconstruct images on the fly. Instead we
introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform
connected directly to data streams coming from the scanner, which can perform
event building, filtering, coincidence search and Region-Of-Response (ROR)
reconstruction by the programmable logic and visualization by the integrated
processors. The platform significantly reduces data volume converting raw data
to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201
Development of a strategy for calibrating the novel SiPM camera of the SST-1M telescope proposed for the Cherenkov Telescope Array
CTA will comprise a sub-array of up to 70 small size telescopes (SSTs) at the
southern array. The SST-1M project, a 4 m-diameter Davies Cotton telescope with
9 degrees FoV and a 1296 pixels SiPM camera, is designed to meet the
requirements of the next generation ground based gamma-ray observatory CTA in
the energy range above 3 TeV. Silicon photomultipliers (SiPM) cameras of
gamma-ray telescopes can achieve good performance even during high night sky
background conditions. Defining a fully automated calibration strategy of SiPM
cameras is of great importance for large scale production validation and online
calibration. The SST-1M sub-consortium developed a software compatible with CTA
pipeline software (CTApipe). The calibration of the SST-1M camera is based on
the Camera Test Setup (CTS), a set of LED boards mounted in front of the
camera. The CTS LEDs are operated in pulsed or continuous mode to emulate
signal and night sky background respectively. Continuous and pulsed light data
analysis allows us to extract single pixel calibration parameters to be used
during CTA operation.Comment: All CTA contributions at arXiv:1709.0348
Control Software for the SST-1M Small-Size Telescope prototype for the Cherenkov Telescope Array
The SST-1M is a 4-m Davies--Cotton atmospheric Cherenkov telescope optimized
to provide gamma-ray sensitivity above a few TeV. The SST-1M is proposed as
part of the Small-Size Telescope array for the Cherenkov Telescope Array (CTA),
the first prototype has already been deployed. The SST-1M control software of
all subsystems (active mirror control, drive system, safety system,
photo-detection plane, DigiCam, CCD cameras) and the whole telescope itself
(master controller) uses the standard software design proposed for all CTA
telescopes based on the ALMA Common Software (ACS) developed to control the
Atacama Large Millimeter Array (ALMA). Each subsystem is represented by a
separate ACS component, which handles the communication to and the operation of
the subsystem. Interfacing with the actual hardware is performed via the OPC UA
communication protocol, supported either natively by dedicated industrial
standard servers (PLCs) or separate service applications developed to wrap
lower level protocols (e.g. CAN bus, camera slow control) into OPC UA. Early
operations of the telescope without the camera were already carried out. The
camera is fully assembled and is capable to perform data acquisition using
artificial light source.Comment: In Proceedings of the 35th International Cosmic Ray Conference
(ICRC2017), Busan, Korea. All CTA contributions at arXiv:1709.0348
Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array
The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton
telescope and is among the proposed telescope designs for the Cherenkov
Telescope Array (CTA). It is conceived to provide the high-energy ( few TeV)
coverage. The SST-1M contains proven technology for the telescope structure and
innovative electronics and photosensors for the camera. Its design is meant to
be simple, low-budget and easy-to-build industrially.
Each device subsystem of an SST-1M telescope is made visible to CTA through a
dedicated industrial standard server. The software is being developed in
collaboration with the CTA Medium-Size Telescopes to ensure compatibility and
uniformity of the array control. Early operations of the SST-1M prototype will
be performed with a subset of the CTA central array control system based on the
Alma Common Software (ACS). The triggered event data are time stamped,
formatted and finally transmitted to the CTA data acquisition.
The software system developed to control the devices of an SST-1M telescope
is described, as well as the interface between the telescope abstraction to the
CTA central control and the data acquisition system.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array
The SST-1M is one of three prototype small-sized telescope designs proposed
for the Cherenkov Telescope Array, and is built by a consortium of Polish and
Swiss institutions. The SST-1M will operate with DigiCam - an innovative,
compact camera with fully digital read-out and trigger electronics. A high
level of integration will be achieved by massively deploying state-of-the-art
multi-gigabit transmission channels, beginning from the ADC flash converters,
through the internal data and trigger signals transmission over backplanes and
cables, to the camera's server link. Such an approach makes it possible to
design the camera to fit the size and weight requirements of the SST-1M
exactly, and provide low power consumption, high reliability and long lifetime.
The structure of the digital electronics will be presented, along with main
physical building blocks and the internal architecture of FPGA functional
subsystems.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array
The FlashCam group is currently preparing photomultiplier-tube based cameras
proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array
(CTA). The cameras are designed around the FlashCam readout concept which is
the first fully-digital readout system for Cherenkov cameras, based on
commercial FADCs and FPGAs as key components for the front-end electronics
modules and a high performance camera server as back-end. This contribution
describes the progress of the full-scale FlashCam camera prototype currently
under construction, as well as performance results also obtained with earlier
demonstrator setups. Plans towards the production and implementation of
FlashCams on site are also briefly presented.Comment: 8 pages, 6 figures. In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
- …