99 research outputs found
Enhancing inquiry responsive time to discover spatial items with keywords
Routine spatial questions, for example, reach hunt and closest neighbor recovery, include just conditions on objects' geometric properties. Today, numerous cutting edge applications call for novel types of inquiries that plan to discover articles fulfilling both a spatial predicate, and a predicate on their related writings. Right now the best answer for such inquiries depends on the IR2-tree, which, as appeared in this a couple of deficiencies that genuinely affect its proficiency. Roused by this, we build up another access system called the spatial upset record that extends the customary transformed file to adapt to multidimensional information, and accompanies calculations that can answer closest neighbor questions with catchphrases progressively. As checked by examinations, the proposed methods beat the IR2-tree in inquiry reaction time altogether, frequently by a component of requests of extent
Transcriptional regulatory network analysis during epithelial-mesenchymal transformation of retinal pigment epithelium
PURPOSE: Phenotypic transformation of retinal pigment epithelial (RPE) cells contributes to the onset and progression of ocular proliferative disorders such as proliferative vitreoretinopathy (PVR). The formation of epiretinal membranes in PVR may involve an epithelial-mesenchymal transformation (EMT) of RPE cells as part of an aberrant wound healing response. While the underlying mechanism remains unclear, this likely involves changes in RPE cell gene expression under the control of specific transcription factors (TFs). Thus, the purpose of the present study was to identify TFs that may play a role in this process.
METHODS: Regulatory regions of genes that are differentially regulated during phenotypic transformation of ARPE-19 cells, a human RPE cell line, were subjected to computational analysis using the promoter analysis and interaction network toolset (PAINT). The PAINT analysis was used to identify transcription response elements (TREs) statistically overrepresented in the promoter and first intron regions of two reciprocally regulated RPE gene clusters, across four species including the human genome. These TREs were then used to construct transcriptional regulatory network models of the two RPE gene clusters. The validity of these models was then tested using RT-PCR to detect differential expression of the corresponding TF mRNAs during RPE differentiation in both undifferentiated and differentiated ARPE-19 and primary chicken RPE cell cultures.
RESULTS: The computational analysis resulted in the successful identification of specific transcription response elements (TREs) and their cognate TFs that are candidates for serving as nodes in a transcriptional regulatory network regulating EMT in RPE cells. The models predicted TFs whose differential expression during RPE EMT was successfully verified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, including Oct-1, hepatocyte nuclear factor 1 (HNF-1), similar to mothers against decapentaplegic 3 (SMAD3), transcription factor E (TFE), core binding factor, erythroid transcription factor-1 (GATA-1), interferon regulatory factor-1 (IRF), natural killer homeobox 3A (NKX3A), Sterol regulatory element binding protein-1 (SREBP-1), and lymphocyte enhancer factor-1 (LEF-1).
CONCLUSIONS: These studies successfully applied computational modeling and biochemical verification to identify biologically relevant transcription factors that are likely to regulate RPE cell phenotype and pathological changes in RPE in response to diseases or trauma. These TFs may provide potential therapeutic targets for the prevention and treatment of ocular proliferative disorders such as PVR
Bulked-Segregant Analysis Coupled to Whole Genome Sequencing (BSA-Seq) for Rapid Gene Cloning in Maize
Forward genetics remains a powerful method for revealing the genes underpinning organismal form and function, and for revealing how these genes are tied together in gene networks. In maize, forward genetics has been tremendously successful, but the size and complexity of the maize genome made identifying mutant genes an often arduous process with traditional methods. The next generation sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an enhancer of teosinte branched1, and to identify a new allele of defective kernel1. Our method provides a quick, simple way to clone genes in maize
Single-Cell Glia and Neuron Gene Expression in the Central Amygdala in Opioid Withdrawal Suggests Inflammation With Correlated Gut Dysbiosis.
Drug-seeking in opioid dependence is due in part to the severe negative emotion associated with the withdrawal syndrome. It is well-established that negative emotional states emerge from activity in the amygdala. More recently, gut microflora have been shown to contribute substantially to such emotions. We measured gene expression in single glia and neurons gathered from the amygdala using laser capture microdissection and simultaneously measured gut microflora in morphine-dependent and withdrawn rats to investigate drivers of negative emotion in opioid withdrawal. We found that neuroinflammatory genes, notabl
A Single Cell Transcriptomics Map of Paracrine Networks in the Intrinsic Cardiac Nervous System
We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease
Evaluation of residence time on nitrogen oxides removal in non-thermal plasma reactor
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine
exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage
of screw thread electrodes in comparison with the rod electrode. Furthermore,between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode
Big Domains Are Novel Ca2+-Binding Modules: Evidences from Big Domains of Leptospira Immunoglobulin-Like (Lig) Proteins
binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. with dissociation constants of 2–4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. binding
Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model
BACKGROUND: Pendred syndrome, a common autosomal-recessive disorder characterized by congenital deafness and goiter, is caused by mutations of SLC26A4, which codes for pendrin. We investigated the relationship between pendrin and deafness using mice that have (Slc26a4(+/+)) or lack a complete Slc26a4 gene (Slc26a4(-/-)). METHODS: Expression of pendrin and other proteins was determined by confocal immunocytochemistry. Expression of mRNA was determined by quantitative RT-PCR. The endocochlear potential and the endolymphatic K(+ )concentration were measured with double-barreled microelectrodes. Currents generated by the stria marginal cells were recorded with a vibrating probe. Tissue masses were evaluated by morphometric distance measurements and pigmentation was quantified by densitometry. RESULTS: Pendrin was found in the cochlea in apical membranes of spiral prominence cells and spindle-shaped cells of stria vascularis, in outer sulcus and root cells. Endolymph volume in Slc26a4(-/- )mice was increased and tissue masses in areas normally occupied by type I and II fibrocytes were reduced. Slc26a4(-/- )mice lacked the endocochlear potential, which is generated across the basal cell barrier by the K(+ )channel KCNJ10 localized in intermediate cells. Stria vascularis was hyperpigmented, suggesting unalleviated free radical damage. The basal cell barrier appeared intact; intermediate cells and KCNJ10 mRNA were present but KCNJ10 protein was absent. Endolymphatic K(+ )concentrations were normal and membrane proteins necessary for K(+ )secretion were present, including the K(+ )channel KCNQ1 and KCNE1, Na(+)/2Cl(-)/K(+ )cotransporter SLC12A2 and the gap junction GJB2. CONCLUSIONS: These observations demonstrate that pendrin dysfunction leads to a loss of KCNJ10 protein expression and a loss of the endocochlear potential, which may be the direct cause of deafness in Pendred syndrome
Integrative Gene Regulatory Network Analysis Reveals Light-Induced Regional Gene Expression Phase Shift Programs in the Mouse Suprachiasmatic Nucleus
We use the multigenic pattern of gene expression across suprachiasmatic nuclei (SCN) regions and time to understand the dynamics within the SCN in response to a circadian phase-resetting light pulse. Global gene expression studies of the SCN indicate that circadian functions like phase resetting are complex multigenic processes. While the molecular dynamics of phase resetting are not well understood, it is clear they involve a “functional gene expression program”, e.g., the coordinated behavior of functionally related genes in space and time. In the present study we selected a set of 89 of these functionally related genes in order to further understand this multigenic program. By use of high-throughput qPCR we studied 52 small samples taken by anatomically precise laser capture from within the core and shell SCN regions, and taken at time points with and without phase resetting light exposure. The results show striking regional differences in light response to be present in the mouse SCN. By using network-based analyses, we are able to establish a highly specific multigenic correlation between genes expressed in response to light at night and genes normally activated during the day. The light pulse triggers a complex and highly coordinated network of gene regulation. The largest differences marking neuroanatomical location are in transmitter receptors, and the largest time-dependent differences occur in clock-related genes. Nighttime phase resetting appears to recruit transcriptional regulatory processes normally active in the day. This program, or mechanism, causes the pattern of core region gene expression to transiently shift to become more like that of the shell region
- …