67 research outputs found

    Ranolazine Effects on NaV1.2 and Modulation by pH

    Get PDF

    Pro-arrhythmic Effects of Low Plasma [K+] in Human Ventricle: An Illustrated Review

    Full text link
    [EN] Potassium levels in the plasma, [Kþ]o, are regulated precisely under physiological conditions. However, increases (from approx. 4.5 to 8.0 mM) can occur as a consequence of, e.g., endurance exercise, ischemic insult or kidney failure. This hyperkalemic modulation of ventricular electrophysiology has been studied extensively. Hypokalemia is also common. It can occur in response to diuretic therapy, following renal dialysis, or during recovery from endurance exercise. In the human ventricle, clinical hypokalemia (e.g., [Kþ]o levels of approx. 3.0 mM) can cause marked changes in both the resting potential and the action potential waveform, and these may promote arrhythmias. Here, we provide essential background information concerning the main Kþ-sensitive ion channel mechanisms that act in concert to produce prominent short-term ventricular electrophysiological changes, and illustrate these by implementing recent mathematical models of the human ventricular action potential. Even small changes (~1 mM) in [Kþ]o result in significant alterations in two different Kþ currents, IK1 and HERG. These changes can markedly alter in resting membrane potential and/or action potential waveform in human ventricle. Specifically, a reduction in net outward transmembrane Kþ currents (repolarization reserve) and an increased substrate input resistance contribute to electrophysiological instability during the plateau of the action potential and may promote pro-arrhythmic early after-depolarizations (EADs). Translational settings where these insights apply include: optimal diuretic therapy, and the interpretation of data from Phase II and III trials for anti-arrhythmic drug candidates.In Valencia, this work was supported by: (i) the “Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016” from the Ministerio de Economía, Industria y Competitividad of Spain (DPI2016-75799-R) and AEI/FEDER, UE, and by the “Programa Prometeu (PROMETEU/2016/088) de la Conselleria d'Educació, Formació I Ocupació, Generalitat Valenciana”. and (v) GileadSciences, Ltd. Wayne Giles acknowledges receipt of financial support in the form of a salary award (Medical Scientist) from Alberta Innovates-Health Solutions, and operating funding from the Canadian Institutes for Health Research and the Heart and Stroke Foundation of Alberta.Trénor Gomis, BA.; Cardona-Urrego, KE.; Romero Pérez, L.; Gómez García, JF.; Saiz Rodríguez, FJ.; Rajamani, S.; Belardinelli, L.... (2018). Pro-arrhythmic Effects of Low Plasma [K+] in Human Ventricle: An Illustrated Review. Trends in Cardiovascular Medicine. 28(4):233-242. https://doi.org/10.1016/j.tcm.2017.11.002S23324228

    In silico assessment of drug safety in human heart applied to late sodium current blockers

    Full text link
    Drug-induced action potential (AP) prolongation leading to Torsade de Pointes is a major concern for the development of anti-arrhythmic drugs. Nevertheless the development of improved anti-arrhythmic agents, some of which may block different channels, remains an important opportunity. Partial block of the late sodium current (INaL) has emerged as a novel anti-arrhythmic mechanism. It can be effective in the settings of free radical challenge or hypoxia. In addition, this approach can attenuate pro-arrhythmic effects of blocking the rapid delayed rectifying K+ current (IKr). The main goal of our computational work was to develop an in-silico tool for preclinical anti-arrhythmic drug safety assessment, by illustrating the impact of IKr/INaL ratio of steady-state block of drug candidates on “torsadogenic” biomarkers. The O’Hara et al. AP model for human ventricular myocytes was used. Biomarkers for arrhythmic risk, i.e., AP duration, triangulation, reverse rate-dependence, transmural dispersion of repolarization and electrocardiogram QT intervals, were calculated using single myocyte and one-dimensional strand simulations. Predetermined amounts of block of INaL and IKr were evaluated. “Safety plots” were developed to illustrate the value of the specific biomarker for selected combinations of IC50s for IKr and INaL of potential drugs. The reference biomarkers at baseline changed depending on the “drug” specificity for these two ion channel targets. Ranolazine and GS967 (a novel potent inhibitor of INaL) yielded a biomarker data set that is considered safe by standard regulatory criteria. This novel in-silico approach is useful for evaluating pro-arrhythmic potential of drugs and drug candidates in the human ventricle.This work was supported by (1) Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica, (2) Plan Avanza en el marco de la Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion del Ministerio de Industria Turismo y Comercio of Spain (TSI-020100-2010-469), (3) Programa de Apoyo a la Investigacion y Desarrollo (PAID-06-11-2002) de la Universidad Politecnica de Valencia, (4) Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana and (5) Gilead Sciences, Ltd.Trenor Gomis, BA.; Gomis-Tena Dolz, J.; Cardona Urrego, KE.; Romero Pérez, L.; Rajamani, S.; Belardinelli, L.; Giles, WR.... (2013). In silico assessment of drug safety in human heart applied to late sodium current blockers. Channels. 7(4):1-14. doi:10.4161/chan.24905S11474Maltsev, V. A., Silverman, N., Sabbah, H. N., & Undrovinas, A. I. (2007). Chronic heart failure slows late sodium current in human and canine ventricular myocytes: Implications for repolarization variability. European Journal of Heart Failure, 9(3), 219-227. doi:10.1016/j.ejheart.2006.08.007Zaza, A., Belardinelli, L., & Shryock, J. C. (2008). Pathophysiology and pharmacology of the cardiac «late sodium current». Pharmacology & Therapeutics, 119(3), 326-339. doi:10.1016/j.pharmthera.2008.06.001Song, Y., Shryock, J. C., Wagner, S., Maier, L. S., & Belardinelli, L. (2006). Blocking Late Sodium Current Reduces Hydrogen Peroxide-Induced Arrhythmogenic Activity and Contractile Dysfunction. Journal of Pharmacology and Experimental Therapeutics, 318(1), 214-222. doi:10.1124/jpet.106.101832Milberg, P., Pott, C., Fink, M., Frommeyer, G., Matsuda, T., Baba, A., … Eckardt, L. (2008). Inhibition of the Na+/Ca2+ exchanger suppresses torsades de pointes in an intact heart model of long QT syndrome-2 and long QT syndrome-3. Heart Rhythm, 5(10), 1444-1452. doi:10.1016/j.hrthm.2008.06.017Jia, S., Lian, J., Guo, D., Xue, X., Patel, C., Yang, L., … Yan, G.-X. (2011). Modulation of the late sodium current by ATX-II and ranolazine affects the reverse use-dependence and proarrhythmic liability of IKrblockade. British Journal of Pharmacology, 164(2), 308-316. doi:10.1111/j.1476-5381.2010.01181.xUNDROVINAS, A. I., BELARDINELLI, L., UNDROVINAS, N. A., & SABBAH, H. N. (2006). Ranolazine Improves Abnormal Repolarization and Contraction in Left Ventricular Myocytes of Dogs with Heart Failure by Inhibiting Late Sodium Current. Journal of Cardiovascular Electrophysiology, 17(s1), S169-S177. doi:10.1111/j.1540-8167.2006.00401.xWu, L., Shryock, J. C., Song, Y., Li, Y., Antzelevitch, C., & Belardinelli, L. (2004). Antiarrhythmic Effects of Ranolazine in a Guinea Pig in Vitro Model of Long-QT Syndrome. Journal of Pharmacology and Experimental Therapeutics, 310(2), 599-605. doi:10.1124/jpet.104.066100MOSS, A. J., ZAREBA, W., SCHWARZ, K. Q., ROSERO, S., MCNITT, S., & ROBINSON, J. L. (2008). Ranolazine Shortens Repolarization in Patients with Sustained Inward Sodium Current Due to Type-3 Long-QT Syndrome. Journal of Cardiovascular Electrophysiology, 19(12), 1289-1293. doi:10.1111/j.1540-8167.2008.01246.xSong, Y., Shryock, J. C., Wu, L., & Belardinelli, L. (2004). Antagonism by Ranolazine of the Pro-Arrhythmic Effects of Increasing Late INa in Guinea Pig Ventricular Myocytes. Journal of Cardiovascular Pharmacology, 44(2), 192-199. doi:10.1097/00005344-200408000-00008Belardinelli, L., Liu, G., Smith-Maxwell, C., Wang, W.-Q., El-Bizri, N., Hirakawa, R., … Shryock, J. C. (2012). A Novel, Potent, and Selective Inhibitor of Cardiac Late Sodium Current Suppresses Experimental Arrhythmias. Journal of Pharmacology and Experimental Therapeutics, 344(1), 23-32. doi:10.1124/jpet.112.198887Banyasz, T., Koncz, R., Fulop, L., Szentandrassy, N., Magyar, J., & Nanasi, P. (2004). Profile of IKs During the Action Potential Questions the Therapeutic Value of IKs Blockade. Current Medicinal Chemistry, 11(1), 45-60. doi:10.2174/0929867043456304Hopenfeld, B. (2006). A mathematical analysis of the action potential plateau duration of a human ventricular myocyte. Journal of Theoretical Biology, 240(2), 311-322. doi:10.1016/j.jtbi.2005.09.021Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., & Giles, W. R. (1998). Mathematical Model of an Adult Human Atrial Cell. Circulation Research, 82(1), 63-81. doi:10.1161/01.res.82.1.63Viswanathan, P. (1999). Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovascular Research, 42(2), 530-542. doi:10.1016/s0008-6363(99)00035-8Wu, R., & Patwardhan, A. (2007). Effects of rapid and slow potassium repolarization currents and calcium dynamics on hysteresis in restitution of action potential duration. Journal of Electrocardiology, 40(2), 188-199. doi:10.1016/j.jelectrocard.2006.01.001Zaniboni, M. (2011). 3D current–voltage–time surfaces unveil critical repolarization differences underlying similar cardiac action potentials: A model study. Mathematical Biosciences, 233(2), 98-110. doi:10.1016/j.mbs.2011.06.008Zaniboni, M. (2012). Late Phase of Repolarization is Autoregenerative and Scales Linearly with Action Potential Duration in Mammals Ventricular Myocytes: A Model Study. IEEE Transactions on Biomedical Engineering, 59(1), 226-233. doi:10.1109/tbme.2011.2170987Zaniboni, M., Riva, I., Cacciani, F., & Groppi, M. (2010). How different two almost identical action potentials can be: A model study on cardiac repolarization. Mathematical Biosciences, 228(1), 56-70. doi:10.1016/j.mbs.2010.08.007Belardinelli, L., Antzelevitch, C., & Vos, M. A. (2003). Assessing predictors of drug-induced torsade de pointes. Trends in Pharmacological Sciences, 24(12), 619-625. doi:10.1016/j.tips.2003.10.002Shah, R. R., & Hondeghem, L. M. (2005). Refining detection of drug-induced proarrhythmia: QT interval and TRIaD. Heart Rhythm, 2(7), 758-772. doi:10.1016/j.hrthm.2005.03.023Hondeghem, L. M., Carlsson, L., & Duker, G. (2001). Instability and Triangulation of the Action Potential Predict Serious Proarrhythmia, but Action Potential Duration Prolongation Is Antiarrhythmic. Circulation, 103(15), 2004-2013. doi:10.1161/01.cir.103.15.2004Mirams, G. R., Cui, Y., Sher, A., Fink, M., Cooper, J., Heath, B. M., … Noble, D. (2011). Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovascular Research, 91(1), 53-61. doi:10.1093/cvr/cvr044Obiol-Pardo, C., Gomis-Tena, J., Sanz, F., Saiz, J., & Pastor, M. (2011). A Multiscale Simulation System for the Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling, 51(2), 483-492. doi:10.1021/ci100423zSuzuki, S., Murakami, S., Tsujimae, K., Findlay, I., & Kurachi, Y. (2008). In silico risk assessment for drug-induction of cardiac arrhythmia. Progress in Biophysics and Molecular Biology, 98(1), 52-60. doi:10.1016/j.pbiomolbio.2008.05.003Mirams, G. R., Davies, M. R., Cui, Y., Kohl, P., & Noble, D. (2012). Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing. British Journal of Pharmacology, 167(5), 932-945. doi:10.1111/j.1476-5381.2012.02020.xSarkar, A. X., & Sobie, E. A. (2011). Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: A computational analysis. Heart Rhythm, 8(11), 1749-1755. doi:10.1016/j.hrthm.2011.05.023CHANG, C., ACHARFI, S., WU, M., CHIANG, F., WANG, J., SUNG, T., & CHAHINE, M. (2004). A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovascular Research, 64(2), 268-278. doi:10.1016/j.cardiores.2004.07.007Weirich, J., & Antoni, H. (1998). Rate-dependence of antiarrhythmic and proarrhythmic properties of class I and class III antiarrhythmic drugs. Basic Research in Cardiology, 93(0), s125-s132. doi:10.1007/s003950050236O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061Wu, L., Ma, J., Li, H., Wang, C., Grandi, E., Zhang, P., … Belardinelli, L. (2011). Late Sodium Current Contributes to the Reverse Rate-Dependent Effect of I Kr Inhibition on Ventricular Repolarization. Circulation, 123(16), 1713-1720. doi:10.1161/circulationaha.110.000661Banyasz, T., Barandi, L., Harmati, G., Virag, L., Szentandrassy, N., Marton, I., … P. Nanasi, P. (2011). Mechanism of Reverse Rate-Dependent Action of Cardioactive Agents. Current Medicinal Chemistry, 18(24), 3597-3606. doi:10.2174/092986711796642355Noble D, Tsien RW. The repolarization process of heart cells. In: DeMello WC, ed. Electrical Phenomena in the Heart. New York: Academic Press, 1972:133-161.Fink, M., Noble, D., Virag, L., Varro, A., & Giles, W. R. (2008). Contributions of HERG K+ current to repolarization of the human ventricular action potential. Progress in Biophysics and Molecular Biology, 96(1-3), 357-376. doi:10.1016/j.pbiomolbio.2007.07.011Goineau, S., Castagné, V., Guillaume, P., & Froget, G. (2012). The comparative sensitivity of three in vitro safety pharmacology models for the detection of lidocaine-induced cardiac effects. Journal of Pharmacological and Toxicological Methods, 66(1), 52-58. doi:10.1016/j.vascn.2012.06.001Wu, L., Guo, D., Li, H., Hackett, J., Yan, G.-X., Jiao, Z., … Belardinelli, L. (2008). Role of late sodium current in modulating the proarrhythmic and antiarrhythmic effects of quinidine. Heart Rhythm, 5(12), 1726-1734. doi:10.1016/j.hrthm.2008.09.008Diness, J. G., Hansen, R. S., Nissen, J. D., Jespersen, T., & Grunnet, M. (2009). Antiarrhythmic effect of IKr activation in a cellular model of LQT3. Heart Rhythm, 6(1), 100-106. doi:10.1016/j.hrthm.2008.10.020Laursen, M., Olesen, S.-P., Grunnet, M., Mow, T., & Jespersen, T. (2011). Characterization of cardiac repolarization in the Göttingen minipig. Journal of Pharmacological and Toxicological Methods, 63(2), 186-195. doi:10.1016/j.vascn.2010.10.001HONDEGHEM, L. M. (2006). Thorough QT/QTc Not So Thorough: Removes Torsadogenic Predictors from the T-Wave, Incriminates Safe Drugs, and Misses Profibrillatory Drugs. Journal of Cardiovascular Electrophysiology, 17(3), 337-340. doi:10.1111/j.1540-8167.2006.00347.xHondeghem, L. M., & Snyders, D. J. (1990). Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation, 81(2), 686-690. doi:10.1161/01.cir.81.2.686Bril, A. (1998). Combined potassium and calcium channel antagonistic activities as a basis for neutral frequency dependent increase in action potential duration: comparison between BRL-32872 and azimilide. Cardiovascular Research, 37(1), 130-140. doi:10.1016/s0008-6363(97)00216-2Jurkiewicz, N. K., & Sanguinetti, M. C. (1993). Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circulation Research, 72(1), 75-83. doi:10.1161/01.res.72.1.75O’Hara, T., & Rudy, Y. (2012). Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. American Journal of Physiology-Heart and Circulatory Physiology, 302(5), H1023-H1030. doi:10.1152/ajpheart.00785.2011Stengl, M., Volders, P. G. A., Thomsen, M. B., Spatjens, R. L. H. M. G., Sipido, K. R., & Vos, M. A. (2003). Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes. The Journal of Physiology, 551(3), 777-786. doi:10.1113/jphysiol.2003.044040Shah, R. R. (2002). The significance of QT interval in drug development. British Journal of Clinical Pharmacology, 54(2), 188-202. doi:10.1046/j.1365-2125.2002.01627.xNuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., … Carmeliet, P. (2001). Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nature Medicine, 7(9), 1021-1027. doi:10.1038/nm0901-1021Gautier, M., Zhang, H., & Fearon, I. M. (2008). Peroxynitrite formation mediates LPC-induced augmentation of cardiac late sodium currents. Journal of Molecular and Cellular Cardiology, 44(2), 241-251. doi:10.1016/j.yjmcc.2007.09.007Fearon, I. M., & Brown, S. T. (2004). Acute and chronic hypoxic regulation of recombinant hNav1.5 α subunits. Biochemical and Biophysical Research Communications, 324(4), 1289-1295. doi:10.1016/j.bbrc.2004.09.188Ward, C. A., & Giles, W. R. (1997). Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. The Journal of Physiology, 500(3), 631-642. doi:10.1113/jphysiol.1997.sp022048Saint, D. A. (2009). The cardiac persistent sodium current: an appealing therapeutic target? British Journal of Pharmacology, 153(6), 1133-1142. doi:10.1038/sj.bjp.0707492Zygmunt, A. C., Eddlestone, G. T., Thomas, G. P., Nesterenko, V. V., & Antzelevitch, C. (2001). Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 281(2), H689-H697. doi:10.1152/ajpheart.2001.281.2.h689Trenor, B., Cardona, K., Gomez, J. F., Rajamani, S., Ferrero, J. M., Belardinelli, L., & Saiz, J. (2012). Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure. PLoS ONE, 7(3), e32659. doi:10.1371/journal.pone.0032659Martin, R. L., McDermott, J. S., Salmen, H. J., Palmatier, J., Cox, B. F., & Gintant, G. A. (2004). The Utility of hERG and Repolarization Assays in Evaluating Delayed Cardiac Repolarization: Influence of Multi-Channel Block. Journal of Cardiovascular Pharmacology, 43(3), 369-379. doi:10.1097/00005344-200403000-00007Antzelevitch, C., Belardinelli, L., Zygmunt, A. C., Burashnikov, A., Di Diego, J. M., Fish, J. M., … Thomas, G. (2004). Electrophysiological Effects of Ranolazine, a Novel Antianginal Agent With Antiarrhythmic Properties. Circulation, 110(8), 904-910. doi:10.1161/01.cir.0000139333.83620.5dNoble, D. (2006). Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart, 92(suppl_4), iv1-iv5. doi:10.1136/hrt.2005.078782Scirica, B. M., Morrow, D. A., Hod, H., Murphy, S. A., Belardinelli, L., Hedgepeth, C. M., … Braunwald, E. (2007). Effect of Ranolazine, an Antianginal Agent With Novel Electrophysiological Properties, on the Incidence of Arrhythmias in Patients With Non–ST-Segment–Elevation Acute Coronary Syndrome. Circulation, 116(15), 1647-1652. doi:10.1161/circulationaha.107.724880Hoefen, R., Reumann, M., Goldenberg, I., Moss, A. J., O-Uchi, J., Gu, Y., … Lopes, C. M. (2012). In Silico Cardiac Risk Assessment in Patients With Long QT Syndrome. Journal of the American College of Cardiology, 60(21), 2182-2191. doi:10.1016/j.jacc.2012.07.053Silva, J. R., Pan, H., Wu, D., Nekouzadeh, A., Decker, K. F., Cui, J., … Rudy, Y. (2009). A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proceedings of the National Academy of Sciences, 106(27), 11102-11106. doi:10.1073/pnas.0904505106STARMER, C. (1991). Lidocaine blockade of continuously and transiently accessible sites in cardiac sodium channels*1. Journal of Molecular and Cellular Cardiology, 23, 73-83. doi:10.1016/0022-2828(91)90026-iRudy, Y., & Silva, J. R. (2006). Computational biology in the study of cardiac ion channels and cell electrophysiology. Quarterly Reviews of Biophysics, 39(1), 57-116. doi:10.1017/s0033583506004227Clancy, C. E., Zhu, Z. I., & Rudy, Y. (2007). Pharmacogenetics and anti-arrhythmic drug therapy: a theoretical investigation. American Journal of Physiology-Heart and Circulatory Physiology, 292(1), H66-H75. doi:10.1152/ajpheart.00312.2006Zygmunt, A. C., Nesterenko, V. V., Rajamani, S., Hu, D., Barajas-Martinez, H., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1606-H1614. doi:10.1152/ajpheart.00242.2011Nesterenko, V. V., Zygmunt, A. C., Rajamani, S., Belardinelli, L., & Antzelevitch, C. (2011). Mechanisms of atrial-selective block of Na+ channels by ranolazine: II. Insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 301(4), H1615-H1624. doi:10.1152/ajpheart.00243.2011Zemzemi, N., Bernabeu, M. O., Saiz, J., Cooper, J., Pathmanathan, P., Mirams, G. R., … Rodriguez, B. (2013). Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. British Journal of Pharmacology, 168(3), 718-733. doi:10.1111/j.1476-5381.2012.02200.xHille B. Ionic Channels of Excitable Membranes. 2nd ed. Sunderland, MA: Sinauer Associates, 1992.Rajamani, S., Shryock, J. C., & Belardinelli, L. (2008). Rapid Kinetic Interactions of Ranolazine With HERG K+ Current. Journal of Cardiovascular Pharmacology, 51(6), 581-589. doi:10.1097/fjc.0b013e3181799690Rajamani, S., El-Bizri, N., Shryock, J. C., Makielski, J. C., & Belardinelli, L. (2009). Use-dependent block of cardiac late Na+ current by ranolazine. Heart Rhythm, 6(11), 1625-1631. doi:10.1016/j.hrthm.2009.07.042Bassingthwaighte, J., Hunter, P., & Noble, D. (2009). The Cardiac Physiome: perspectives for the future. Experimental Physiology, 94(5), 597-605. doi:10.1113/expphysiol.2008.044099Quinn, T. A., Granite, S., Allessie, M. A., Antzelevitch, C., Bollensdorff, C., Bub, G., … Delmar, M. (2011). Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 107(1), 4-10. doi:10.1016/j.pbiomolbio.2011.07.001Glukhov, A. V., Fedorov, V. V., Lou, Q., Ravikumar, V. K., Kalish, P. W., Schuessler, R. B., … Efimov, I. R. (2010). Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle. Circulation Research, 106(5), 981-991. doi:10.1161/circresaha.109.204891MALTSEV, V., & UNDROVINAS, A. (2006). A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes. Cardiovascular Research, 69(1), 116-127. doi:10.1016/j.cardiores.2005.08.015Drouin, E., Charpentier, F., Gauthier, C., Laurent, K., & Le Marec, H. (1995). Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: Evidence for presence of M cells. Journal of the American College of Cardiology, 26(1), 185-192. doi:10.1016/0735-1097(95)00167-xBerecki, G., Zegers, J. G., Bhuiyan, Z. A., Verkerk, A. O., Wilders, R., & Van Ginneken, A. C. G. (2006). Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique. The Journal of Physiology, 570(2), 237-250. doi:10.1113/jphysiol.2005.096578Maltsev, V. A., Silverman, N., Sabbah, H. N., & Undrovinas, A. I. (2007). Chronic heart failure slows late sodium current in human and canine ventricular myocytes: Implications for repolarization variability. European Journal of Heart Failure, 9(3), 219-227. doi:10.1016/j.ejheart.2006.08.007Valdivia, C. R., Chu, W. W., Pu, J., Foell, J. D., Haworth, R. A., Wolff, M. R., … Makielski, J. C. (2005). Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. Journal of Molecular and Cellular Cardiology, 38(3), 475-483. doi:10.1016/j.yjmcc.2004.12.012Belardinelli, L. (2006). Inhibition of the late sodium current as a potential cardioprotective principle:

    Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Carbon monoxide (CO) that is produced in a number of different mammalian tissues is now known to have significant effects on the cardiovascular system. These include: (i) vasodilation, (ii) changes in heart rate and strength of contractions, and (iii) modulation of autonomic nervous system input to both the primary pacemaker and the working myocardium. Excessive CO in the environment is toxic and can initiate or mediate life threatening cardiac rhythm disturbances. Recent reports link these ventricular arrhythmias to an increase in the slowly inactivating, or “late” component of the Na+ current in the mammalian heart. The main goal of this paper is to explore the basis of this pro-arrhythmic capability of CO by incorporating changes in CO-induced ion channel activity with intracellular signaling pathways in the mammalian heart. To do this, a quite well-documented mathematical model of the action potential and intracellular calcium transient in the human ventricular myocyte has been employed. In silico iterations based on this model provide a useful first step in illustrating the cellular electrophysiological consequences of CO that have been reported from mammalian heart experiments. Specifically, when the Grandi et al. model of the human ventricular action potential is utilized, and after the Na+ and Ca2+ currents in a single myocyte are modified based on the experimental literature, early after-depolarization (EAD) rhythm disturbances appear, and important elements of the underlying causes of these EADs are revealed/illustrated. Our modified mathematical model of the human ventricular action potential also provides a convenient digital platform for designing future experimental work and relating these changes in cellular cardiac electrophysiology to emerging clinical and epidemiological data on CO toxicity.In Valencia, this work was supported by: (i) VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica from the Ministerio de Economia y Competitividad of Spain (TIN2012-37546-0O3-01) and the European Commission (European Regional Development Funds-ERDF-FEDER)., (ii) Plan Avanza en el marco de la Accion Estrategica de Telecomunicaciones y Sociedad de la Informacion del Ministerio de Industria Turismo y Comercio of Spain (TSI-020100-2010-469), (iii) Programa deApoyo a la Investigacion y Desarrollo (PAID-06-11-2002) de la Universitat Politecnica de Valencia, (iv) Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana, and (v) GileadSciences, Ltd. Wayne Giles acknowledges receipt of financial support in the form of a salary award (Medical Scientist) from Alberta Innovates-Health Solutions, and operating funding from the Canadian Institutes for Health Research and the Heart and Stroke Foundation of Alberta.Trénor Gomis, BA.; Cardona-Urrego, KE.; Saiz Rodríguez, FJ.; Rajamani, S.; Belardinelli, L.; Giles, WR. (2013). Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations. Frontiers in Physiology. 4:1-11. https://doi.org/10.3389/fphys.2013.00282S111

    A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current

    Get PDF
    [EN] Background: The QT interval is a phase of the cardiac cycle that corresponds to action potential duration (APD) including cellular repolarization (T-wave). In both clinical and experimental settings, prolongation of the QT interval of the electrocardiogram (ECG) and related proarrhythmia have been so strongly associated that a prolonged QT interval is largely accepted as surrogate marker for proarrhythmia. Accordingly, drugs that prolong the QT interval are not considered for further preclinical development resulting in removal of many promising drugs from development. While reduction of drug interactions with hERG is an important goal, there are promising means to mitigate hERG block. Here, we examine one possibility and test the hypothesis that selective inhibition of the cardiac late Na current (I-NaL) by the novel compound GS-458967 can suppress proarrhythmic markers. Methods and results: New experimental data has been used to calibrate INaL in the Soltis-Saucerman computationally based model of the rabbit ventricular action potential to study effects of GS-458967 on INaL during the rabbit ventricular AP. We have also carried out systematic in silico tests to determine if targeted block of INaL would suppress proarrhythmia markers in ventricular myocytes described by TRIaD: Triangulation, Reverse use dependence, beat-to-beat Instability of action potential duration, and temporal and spatial action potential duration Dispersion. Conclusions: Our computer modeling approach based on experimental data, yields results that suggest that selective inhibition of INaL modifies all TRIaD related parameters arising from acquired Long-QT Syndrome, and thereby reduced arrhythmia risk. This study reveals the potential for adjunctive pharmacotherapy via targeted block of INaL to mitigate proarrhythmia risk for drugs with significant but unintended off-target hERG blocking effects.The National Institutes of Health R01 HL128537-01 (CEC), U01 HL126273-01 (CEC) and R01HL128170-02 (CEC).Yang, P.; El-Bizri, N.; Romero PĂ©rez, L.; Giles, W.; Rajamani, S.; Belardinelli, L.; Clancy, CE. (2016). A computational model predicts adjunctive pharmacotherapy for cardiac safety via selective inhibition of the late cardiac Na current. Journal of Molecular and Cellular Cardiology. 99:151-161. https://doi.org/10.1016/j.yjmcc.2016.08.011S1511619
    • …
    corecore