7 research outputs found
Insects: Functional Morphology, Biomechanics and Biomimetics
Insects are the most diverse animal taxon, both in terms of the number of species and the number of individuals. There are roughly one million described insect species, and their real number is estimated to be five to ten times this figure [...]
Conflicting Requirements for Transparency and Mechanical Stability in the Compound Eyes of Desert Locusts
Compound eyes of insects should be both thin and transparent to allow light to pass through, and at the same time mechanically stable to serve as exoskeleton. These conflicting requirements make the corneal cuticle an interesting example for studying cuticle biomechanics as well as for designing composite materials that seek similar properties. Here, scanning electron microscopy, confocal laser scanning microscopy, and nanoindentation are combined to investigate the microstructure, material composition, and material properties of the corneal cuticle of desert locust Schistocerca gregaria. The results suggest that a fully helicoidal architecture and large proportion of resilin in the corneal cuticle are likely to be adaptations for light transmission. Even though the corneal cuticle is resilin-rich, its elastic modulus is at least three times higher than that previously reported for other resilin-rich cuticles. This is likely due to the specific microstructure of the corneal cuticle with densely packed layers. This study presents one of a series of studies, in which multidisciplinary approaches are used to understand the link between the structure, material, property, and function in insect cuticle
The frequency of wing damage in a migrating butterfly
The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018-2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species
Biomechanical Strategies Underlying the Robust Body Armour of an Aposematic Weevil
Robust body armor is one of many anti-predator strategies used among animal taxa. The exoskeleton of insects can serve as the secondary defense mechanism in combination with the primary defense such as warning color. Aposematic Pachyrhynchus weevils advertise their unprofitability and use their robust exoskeleton for effective defense against lizard predators. While the mature weevils survive after the predatory attack, the soft teneral ones can easily be consumed. To reveal how the mature weevils achieve such effective protection, we investigated the ontogenetic changes in the microstructure and material properties of the exoskeleton of the adult weevils. We also tested the functional role of a weevil-specific structure, the fibrous ridge, in the robustness of the elytral cuticle of the mature weevils. The results showed that the mature weevils have thicker, stiffer and more sclerotized cuticle than the teneral ones. The fibrous ridges in the endocuticle considerably increase the overall stiffness of their cuticle. Together these biomechanical strategies enable Pachyrhynchus weevils to achieve robust body armor that efficiently protects them from lizard predation
Material heterogeneity of male genitalia reduces genital damage in a bushcricket during sperm removal behaviour
Sperm removal behaviour (SRB) is known in many animals, and male genital structures are often involved in the SRB, e.g. rubbing female genitalia vigorously. However, it remains unclear how those male genital structures function properly without severe genital damage during SRB. In the present study, we focused on the bushcricket Metaplastes ornatus and examined the biomechanics of male and female genital structures, involved in their SRB as a model case. During an initial phase of mating, males of this species thrust their subgenital plate with hook-like spurs and many microscopic spines into the female genital chamber. By moving the subgenital plate back-and-forth, males stimulate females, and this stimulation induces the ejection of sperm previously stored in females. We aimed to uncover the mechanics of the interaction between the subgenital plate and genital chamber during SRB. The genital morphology and its material composition were investigated using modern imaging and microscopy techniques. The obtained results showed a pronounced material heterogeneity in the subgenital plate and the genital chamber. The material heterogeneity was completely absent in that of a second bushcricket species, Poecilimon veluchianus, which does not exhibit SRB. Finite element simulations showed that the specific material heterogeneity can redistribute the stress in the subgenital plate of M. ornatus and, thereby, reduces stress concentration during SRB. This may explain why only a few examined males had a broken spur. We suggest that the observed structural features and material heterogeneity in M. ornatus are adaptations to their SRB
An image based application in Matlab for automated modelling and morphological analysis of insect wings
Despite extensive research on the biomechanics of insect wings over the past years, direct mechanical measurements on sensitive wing specimens remain very challenging. This is especially true for examining delicate museum specimens. This has made the finite element method popular in studies of wing biomechanics. Considering the complexities of insect wings, developing a wing model is usually error-prone and time-consuming. Hence, numerical studies in this area have often accompanied oversimplified models. Here we address this challenge by developing a new tool for fast, precise modelling of insect wings. This application, called WingGram, uses computer vision to detect the boundaries of wings and wing cells from a 2D image. The app can be used to develop wing models that include complex venations, corrugations and camber. WingGram can extract geometric features of the wings, including dimensions of the wing domain and subdomains and the location of vein junctions. Allowing researchers to simply model wings with a variety of forms, shapes and sizes, our application can facilitate studies of insect wing morphology and biomechanics. Being an open-access resource, WingGram has a unique application to expand how scientists, educators, and industry professionals analyse insect wings and similar shell structures in other fields, such as aerospace
Allometric Scaling Reveals Evolutionary Constraint on Odonata Wing Cellularity via Critical Crack Length
Scaling in insect wings is a complex phenomenon that seems pivotal in maintaining wing functionality. In this study, the relationship between wing size and the size, location, and shape of wing cells in dragonflies and damselflies (Odonata) is investigated, aiming to address the question of how these factors are interconnected. To this end, WingGram, the recently developed computer-vision-based software, is used to extract the geometric features of wing cells of 389 dragonflies and damselfly wings from 197 species and 16 families. It has been found that the cell length of the wings does not depend on the wing size. Despite the wide variation in wing length (8.42 to 56.5 mm) and cell length (0.1 to 8.5 mm), over 80% of the cells had a length ranging from 0.5 to 1.5 mm, which was previously identified as the critical crack length of the membrane of locust wings. An isometric scaling of cells is also observed with maximum size in each wing, which increased as the size increased. Smaller cells tended to be more circular than larger cells. The results have implications for bio-mimetics, inspiring new materials and designs for artificial wings with potential applications in aerospace engineering and robotics