7 research outputs found

    Energy drink use, problem drinking and drinking motives in a diverse sample of Alaskan college students

    Get PDF
    Background. Recent research has identified the use of caffeinated energy drinks as a common, potentially risky behaviour among college students that is linked to alcohol misuse and consequences. Research also suggests that energy drink consumption is related to other risky behaviours such as tobacco use, marijuana use and risky sexual activity. Objective. This research sought to examine the associations between frequency of energy drink consumption and problematic alcohol use, alcohol-related consequences, symptoms of alcohol dependence and drinking motives in an ethnically diverse sample of college students in Alaska. We also sought to examine whether ethnic group moderated these associations in the present sample of White, Alaska Native/American Indian and other ethnic minority college students. Design. A paper-and-pencil self-report questionnaire was completed by a sample of 298 college students. Analysis of covariance (ANCOVA) was used to examine the effects of energy drink use, ethnic group and energy drink by ethnic group interactions on alcohol outcomes after controlling for variance attributed to gender, age and frequency of binge drinking. Results. Greater energy drink consumption was significantly associated with greater hazardous drinking, alcohol consequences, alcohol dependence symptoms, drinking for enhancement motives and drinking to cope. There were no main effects of ethnic group, and there were no significant energy drink by ethnic group interactions. Conclusion. These findings replicate those of other studies examining the associations between energy drink use and alcohol problems, but contrary to previous research we did not find ethnic minority status to be protective. It is possible that energy drink consumption may serve as a marker for other health risk behaviours among students of various ethnic groups

    Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation

    No full text
    Anthropogenic greenhouse-gas emissions continue to increase rapidly despite efforts aimed at curbing the release of such gases. One potentially long-term solution for offsetting these emissions is the capture and storage of carbon dioxide. In principle, fluid or gaseous carbon dioxide can be injected into the Earth's crust and locked up as carbonate minerals through chemical reactions with calcium and magnesium ions supplied by silicate minerals. This process can lead to near-permanent and secure sequestration, but its feasibility depends on the ease and vigour of the reactions. Laboratory studies as well as natural analogues indicate that the rate of carbonate mineral formation is much higher in host rocks that are rich in magnesium- and calcium-bearing minerals. Such rocks include, for example, basalts and magnesium-rich mantle rocks that have been emplaced on the continents. Carbonate mineral precipitation could quickly clog up existing voids, presenting a challenge to this approach. However, field and laboratory observations suggest that the stress induced by rapid precipitation may lead to fracturing and subsequent increase in pore space. Future work should rigorously test the feasibility of this approach by addressing reaction kinetics, the evolution of permeability and field-scale injection methods
    corecore