1,489 research outputs found

    Compositional and Thermal Properties of Thylakoid Polar Lipids of Nerium oleander

    Full text link

    Phase Transitions in Thylakoid Polar Lipids of Chilling-Sensitive Plants

    Full text link

    Identification of candidate anti-cancer molecular mechanisms of compound kushen injection using functional genomics

    Get PDF
    Compound Kushen Injection (CKI) has been clinically used in China for over 15 years to treat various types of solid tumours. However, because such Traditional Chinese Medicine (TCM) preparations are complex mixtures of plant secondary metabolites, it is essential to explore their underlying molecular mechanisms in a systematic fashion. We have used the MCF-7 human breast cancer cell line as an initial in vitro model to identify CKI induced changes in gene expression. Cells were treated with CKI for 24 and 48 hours at two concentrations (1 and 2 mg/mL total alkaloids), and the effect of CKI on cell proliferation and apoptosis were measured using XTT and Annexin V/Propidium Iodide staining assays respectively. Transcriptome data of cells treated with CKI or 5-Fluorouracil (5-FU) for 24 and 48 hours were subsequently acquired using high-throughput Illumina RNA-seq technology. In this report we show that CKI inhibited MCF-7 cell proliferation and induced apoptosis in a dose-dependent fashion. We integrated and applied a series of transcriptome analysis methods, including gene differential expression analysis, pathway over-representation analysis, de novo identification of long non-coding RNAs (lncRNA) as well as co-expression network reconstruction, to identify candidate anti-cancer molecular mechanisms of CKI. Multiple pathways were perturbed and the cell cycle was identified as the potential primary target pathway of CKI in MCF-7 cells. CKI may also induce apoptosis in MCF-7 cells via a p53 independent mechanism. In addition, we identified novel lncRNAs and showed that many of them might be expressed as a response to CKI treatment.Zhipeng Qu, Jian Cui, Yuka Harata-Lee, Thazin Nwe Aung, Qianjin Feng, Joy M. Raison, Robert Daniel Kortschak, David L. Adelso

    The challenges of clinical trials in fragile X syndrome

    Get PDF
    RATIONALE: Advances in understanding the underlying mechanisms of conditions such as fragile X syndrome (FXS) and autism spectrum disorders have revealed heterogeneous populations. Recent trials of novel FXS therapies have highlighted several challenges including subpopulations with possibly differential therapeutic responses, the lack of specific outcome measures capturing the full range of improvements of patients with FXS, and a lack of biomarkers that can track whether a specific mechanism is responsive to a new drug and whether the response correlates with clinical improvement. OBJECTIVES: We review the phenotypic heterogeneity of FXS and the implications for clinical research in FXS and other neurodevelopmental disorders. RESULTS: Residual levels of fragile X mental retardation protein (FMRP) expression explain in part the heterogeneity in the FXS phenotype; studies indicate a correlation with both cognitive and behavioral deficits. However, this does not fully explain the extent of phenotypic variance observed or the variability of drug response. Post hoc analyses of studies involving the selective mGluR5 antagonist mavoglurant and the GABAB agonist arbaclofen have uncovered significant therapeutic responses following patient stratification according to FMR1 promoter methylation patterns or baseline severity of social withdrawal, respectively. Future studies designed to quantify disease modification will need to develop new strategies to track changes effectively over time and in multiple symptom domains. CONCLUSION: Appropriate selection of patients and outcome measures is central to optimizing future clinical investigations of these complex disorders

    Land systems as surrogates for biodiversity in conservation planning

    Get PDF
    Environmental surrogates (land classes) for the distribution of biodiversity are increasingly being used for conservation planning. However; data that demonstrate coincident patterns in land classes and biodiversity are limited. We ask the overall question, "Are land systems effective surrogates for the spatial configuration of biodiversity for conservation planning?" and we address three specific questions: (1) Do different land systems represent different biological assemblages.? (2) Do biological assemblages on the same land system remain similar with increasing geographic separation? and (3) Do biological assemblages on the same land system remain similar with increasing land system isolation? Vascular plants, invertebrates, and microbiota were surveyed from 24 sites in four land systems in and northwest New South Wales, Australia. Within each land system, sites were located to give a hierarchy of inter-site distances, and land systems were classified as either "low isolation" (large and continuous) or "high isolation" (small patches interspersed among other land systems). Each type of land system supported components of biodiversity either not found, or found infrequently, on other land systems, suggesting that land systems function as surrogates for biodiversity, and that conservation-area networks representing land-system diversity will also represent biological diversity. However, the majority of taxa were found on more than one land-system type, suggesting that a large proportion of the plant, arthropod, and microbial biodiversity may be characterized by widespread species with low fidelity to particular land systems. Significant relationships between geographic distance among sites and differences among assemblages were revealed for all taxa except the microbiota. Therefore, as sites on the same land system were located farther apart, the assemblages at those sites became more different. This finding strongly suggests that conservation planning based on land-system diversity should also sample the geographic range occupied by each land system. Land-system isolation was not revealed to be a significant Source of variation in assemblage composition. Our research finds support for environmental surrogates for biodiversity in conservation planning, specifically the use of land systems and similarly derived land classifications. However, the need for explicit modeling of geographic distance in conservation planning is clearly indicated

    Incidence, risk factors, and outcome of BK polyomavirus infection after kidney transplantation

    Get PDF
    BACKGROUND Polyomavirus-associated nephropathy is a leading cause of kidney allograft failure. Therapeutic options are limited and prompt reduction of the net state of immunosuppression represents the mainstay of treatment. More recent application of aggressive screening and management protocols for BK-virus infection after renal transplantation has shown encouraging results. Nevertheless, long-term outcome for patients with BK-viremia and nephropathy remains obscure. Risk factors for BK-virus infection are also unclear. AIM To investigate incidence, risk factors, and outcome of BK-virus infection after kidney transplantation. METHODS This single-centre observational study with a median follow up of 57 (31-80) mo comprises 629 consecutive adult patients who underwent kidney transplantation between 2007 and 2013. Data were prospectively recorded and annually reviewed until 2016. Recipients were periodically screened for BK-virus by plasma quantitative polymerized chain reaction. Patients with BK viral load >= 1000 copies/mL were diagnosed BK-viremia and underwent histological assessment to rule out nephropathy. In case of BK-viremia, immunosuppression was minimized according to a prespecified protocol. The following outcomes were evaluated: patient survival, overall graft survival, graft failure considering death as a competing risk, 30-d-event-censored graft failure, response to treatment, rejection, renal function, urologic complications, opportunistic infections, new-onset diabetes after transplantation, and malignancies. We used a multivariable model to analyse risk factors for BK-viremia and nephropathy. RESULTS BK-viremia was detected in 9.5% recipients. Initial viral load was high (>= 10000 copies/mL) in 66.7% and low (= 50% (30% vs 14.6%, P = 0.0047), human leukocyte antigen (HLA) mismatching > 4 (26.7% vs 13.4%, P = 0.0110), and rejection within thirty days of transplant (21.7% vs 9.5%; P = 0.0073) was higher in the viremic group. Five-year patient and overall graft survival rates for patients with or without BK-viremia were similar. However, viremic recipients showed higher 5-year crude cumulative (22.5% vs 12.2%, P = 0.0270) and 30-d-event-censored (22.5% vs 7.1%, P = 0.001) incidences of graft failure than control. In the viremic group we also observed higher proportions of recipients with 5-year estimated glomerular filtration rate 50%, HLA mismatching > 4, and rejection were independent risk factors for BK-virus viremia whereas cytomegalovirus prophylaxis was protective. CONCLUSION Current treatment of BK-virus infection offers sub-optimal results. Initial viremia is a valuable parameter to detect patients at increased risk of nephropathy. Panel-reactive antibody > 50% and Afro-Caribbean ethnicity are independent predictors of BK-virus infection whereas cytomegalovirus prophylaxis has a protective effect
    corecore