20 research outputs found

    Thermoregulatoren

    No full text

    Arms races and the evolution of big fierce societies.

    No full text
    The causes of biological gigantism have received much attention, but only for individual organisms. What selection pressures might favour the evolution of gigantic societies? Here we consider the largest single-queen insect societies, those of the Old World army ant Dorylus, single colonies of which can have 20 million workers. We propose that colony gigantism in Dorylus arises as a result of an arms race and test this prediction by developing a size-structured mathematical model. We use this model for exploring and potentially explaining differences in colony size, colony aggression and colony propagation strategies in populations of New World army ants Eciton and Old World army ants Dorylus. The model shows that, by determining evolutionarily stable strategies (ESSs), differences in the trophic levels at which these army ants live feed forwards into differences in their densities and collision rates and, hence, into different strategies of growth, aggression and propagation. The model predicts large colony size and the occurrence of battles and a colony-propagation strategy involving highly asymmetrical divisions in Dorylus and that Eciton colonies should be smaller, non-combative and exhibit equitable binary fission. These ESSs are in excellent agreement with field observations and demonstrate that gargantuan societies can arise through arms races

    Colony fusion and worker reproduction after queen loss in army ants

    No full text
    Theory predicts that altruism is only evolutionarily stable if it is preferentially directed towards relatives, so that any such behaviour towards seemingly unrelated individuals requires scrutiny. Queenless army ant colonies, which have anecdotally been reported to fuse with queenright foreign colonies, are such an enigmatic case. Here we combine experimental queen removal with population genetics and cuticular chemistry analyses to show that colonies of the African army ant Dorylus molestus frequently merge with neighbouring colonies after queen loss. Merging colonies often have no direct co-ancestry, but are on average probably distantly related because of overall population viscosity. The alternative of male production by orphaned workers appears to be so inefficient that residual inclusive fitness of orphaned workers might be maximized by indiscriminately merging with neighbouring colonies to increase their reproductive success. We show that worker chemical recognition profiles remain similar after queen loss, but rapidly change into a mixed colony Gestalt odour after fusion, consistent with indiscriminate acceptance of alien workers that are no longer aggressive. We hypothesize that colony fusion after queen loss might be more widespread, especially in spatially structured populations of social insects where worker reproduction is not profitable
    corecore