129 research outputs found

    Insight from Molecular, Pathological, and Immunohistochemical Studies on Cellular and Humoral Mechanisms Responsible for Vaccine-Induced Protection of Rainbow Trout against <em>Yersinia ruckeri</em>

    Get PDF
    The immunological mechanisms associated with protection of vaccinated rainbow trout, Oncorhynchus mykiss, against enteric redmouth disease (ERM), caused by Yersinia ruckeri, were previously elucidated by the use of gene expression methodology and immunochemical methods. That approach pointed indirectly to both humoral and cellular elements being involved in protection. The present study correlates the level of protection in rainbow trout to cellular reactions in spleen and head kidney and visualizes the processes by applying histopathological, immunohistochemical, and in situ hybridization techniques. It was shown that these cellular reactions, which were more prominent in spleen than in head kidney, were associated with the expression of immune-related genes, suggesting a Th2-like response. Y. ruckeri, as shown by in situ hybridization (ISH), was eliminated within a few days in vaccinated fish, whereas nonprotected fish still harbored bacteria for a week after infection. Vaccinated fish reestablished normal organ structure within a few days, whereas nonprotected fish showed abnormalities up to 1 month postinfection. Protection in the early phase of infection was mainly associated with the expression of genes encoding innate factors (complement factors, lysozyme, and acute phase proteins), but in the later phase of infection, increased expression of adaptive immune genes dominated. The histological approach used has shown that the cellular changes correlated with protection of vaccinated fish. They comprised transformation of resident cells into macrophage-like cells and increased occurrence of CD8α and IgM cells, suggesting these cells as main players in protection. Future studies should investigate the causality between these factors and protection

    Association between Plasma Antibody Response and Protection in Rainbow Trout Oncorhynchus mykiss Immersion Vaccinated against Yersinia ruckeri

    Get PDF
    A key hallmark of the vertebrate adaptive immune system is the generation of antigen-specific antibodies from B cells. Fish are the most primitive gnathostomes (jawed vertebrates) possessing an adaptive immune system. Vaccination of rainbow trout against enteric redmouth disease (ERM) by immersion in Yersinia ruckeri bacterin confers a high degree of protection to the fish. The immune mechanisms responsible for protection may comprise both cellular and humoral elements but the role of specific immunoglobulins in this system has been questioned and not previously described. The present study demonstrates significant increase in plasma antibody titers following immersion vaccination and significantly reduced mortality during Y. ruckeri challenge

    Potential effects of essential oils in safeguarding the health and enhancing production performance of livestock animals: The current scientific understanding

    Get PDF
    The food sector competes in a cutthroat environment, and it constantly struggles to maintain or even grow its market share. For customer confidence and consumption to remain strong, consistent animal products are needed. The qualitative attributes of the derived goods appear to be improved by the addition of bioactive substances to food, such as essential oils (EOs), and consumers are shielded from the impacts of bacterial and oxidative deterioration. Due to the current controversy surrounding synthetic chemicals and their alleged carcinogenic potential, a substantial study has been done to find effective and safe substitutes. Aromatic plants and the corresponding EOs from them are considered natural products and are typically employed in ruminant nutrition. Since dietary supplementation has been demonstrated to be an easy and practical method to successfully suppress oxidative processes or microbial deterioration at their localized sites, the addition of EOs in animal diets is now becoming a regular practice. However, there is just a little amount of evidence supporting the notion that these compounds may improve nutrient absorption and gastrointestinal health. Additionally, a variety of factors affect how well EOs works in animal diets. These variables can be, on the one hand, the erratic composition, and the many additions to the diet, and, on the other hand, erratic animal genetic elements. Maximizing the use of EOs and creating high-quality products require a deeper understanding of the composition and activity of the gastrointestinal tract microbiota. Numerous EOs contain bioactive substances with the potential to serve as multifunctional feed supplements for animals, with impacts on growth performance, the digestive system, the growth of pathogenic bacteria, and lipid oxidation, among others. To establish their regular use in animal production and to determine their precise mechanism of action, more research is required. The potential advantages of EOs for livestock health and production are highlighted in the current article

    Prospective nutritional, therapeutic, and dietary benefits of camel milk making it a viable option for human consumption: Current state of scientific knowledge

    Get PDF
    For over five thousand years, people in Asia and Africa have known about the health benefits of camel milk. Thus, it is used not only as a food source but also as a medicine. The similarities between camel milk and human milk have been scientifically proven. Camel milk is unique among ruminant milk because it is high in vitamins C and E and low in sugar and cholesterol. Still, it contains a wide variety of beneficial minerals (including sodium, potassium, iron, copper, zinc, and magnesium), besides being rich in several nutrients, including monounsaturated and polyunsaturated fatty acids, serum albumin, lactoferrin, immunoglobulins, lysozyme and the hormone insulin. Because of these components, many medical professionals now recommend camel milk as a treatment for various human ailments. It has been demonstrated to be effective in treating gastrointestinal issues, Type 1 diabetes, and food allergies. As a bonus, camel milk has been utilized to cure autism, lower cholesterol, prevent psoriasis, heal inflammation, aid tuberculosis patients, boost the body's natural defences, and impede the spread of cancer cells. Those who have problems digesting lactose may still be able to tolerate it. Conversely, camel milk can also help reduce an excessively high bilirubin, globulin, and granulocyte count. Drinking camel milk does not affect the erythrocyte sedimentation rate, hemoglobin concentration, and leukocyte count. The proteins in camel milk have an adequate ratio of critical amino acids. Immunoglobulins, which fight disease, are contained inside, and their small size allows antigens to penetrate and boosts the immune system's efficacy. This article highlights the health benefits and medicinal uses of camel milk

    Plasma high‐density lipoprotein cargo is altered in Alzheimer's disease and is associated with regional brain volume

    Get PDF
    Cholesterol levels have been repeatedly linked to Alzheimer's Disease (AD), suggesting that high levels could be detrimental, but this effect is likely attributed to Low-Density Lipoprotein (LDL) cholesterol. On the other hand, High-Density Lipoproteins (HDL) cholesterol levels have been associated with reduced brain amyloidosis and improved cognitive function. However, recent findings have suggested that HDL-functionality, which depends upon the HDL-cargo proteins associated with HDL, rather than HDL levels, appears to be the key factor, suggesting a quality over quantity status. In this report, we have assessed the HDL-cargo (Cholesterol, ApoA-I, ApoA-II, ApoC-I, ApoC-III, ApoD, ApoE, ApoH, ApoJ, CRP, and SAA) in stable healthy control (HC), healthy controls who will convert to MCI/AD (HC-Conv) and AD patients (AD). Compared to HC we observed an increased cholesterol/ApoA-I ratio in AD and HC-Conv, as well as an increased ApoD/ApoA-I ratio and a decreased ApoA-II/ApoA-I ratio in AD. Higher cholesterol/ApoA-I ratio was also associated with lower cortical grey matter volume and higher ventricular volume, while higher ApoA-II/ApoA-I and ApoJ/ApoA-I ratios were associated with greater cortical grey matter volume (and for ApoA-II also with greater hippocampal volume) and smaller ventricular volume. Additionally, in a clinical status-independent manner, the ApoE/ApoA-I ratio was significantly lower in APOE ε4 carriers and lowest in APOE ε4 homozygous. Together, these data indicate that in AD patients the composition of HDL is altered, which may affect HDL functionality, and such changes are associated with altered regional brain volumetric data

    MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors

    Get PDF
    BACKGROUND MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers
    corecore