442 research outputs found

    DEVELOPMENT AND VALIDATION OF A STABILITY INDICATING RP-HPLC METHOD FOR THE DETERMINATION OF POTENTIAL DEGRADATION PRODUCTS OF DIFLUPREDNATE IN OPHTHALMIC EMULSION

    Get PDF
    Objective: The objective of the current study was to develop and validate a simple, robust, precise and accurate RP-HPLC (reverse phase-high performance liquid chromatography) method for the quantitative determination of potential degradation products of Difluprednate (DIFL) in the ophthalmic emulsion.Methods: Chromatographic separation was achieved on the YMC pack ODS-AQ (150× 4.6) mm, 3μm column with a mobile phase containing a gradient mixture of mobile phase A (0.02M Ammonium formate buffer pH 4.5 adjusted with formic acid) and Acetonitrile as mobile phase B, at flow rate of 1.5 ml/min and with UV detection at 240 nm.Results: The peak retention time of DIFL was found at about 17.2 min, the RRT of degradation product-1 (DP-1), degradation product-2 (DP-2), and degradation product-3 (DP-3), were found to be about 0.49, 0.65 and 0.79 respectively (calculated with respect to Difluprednate). Stress testing was performed in accordance with an ICH (international council for harmonisation) guideline Q1A (R2) [1]. The method was validated as per ICH guideline Q2 (R1)[2]. The calibration curve was found to be linear in the concentration range of 0.1 to 0.75 µg/ml for Difluprednate, DP-1, DP-2 and DP-3. The LOD (Limit of detection) was found to be 0.1µg/ml and LOQ (Limit of quantification) of 0.15µg/ml for Difluprednate, DP-1, DP-2 and DP-3 respectively. The recovery from LOQ to 150% was within 90-110%. The forced degradation data confirms the stability indicating the nature of the method.Conclusion: A simple, robust, precise and accurate RP-HPLC method for the quantitative determination of potential degradation products of Difluprednate in the ophthalmic emulsion was developed and validated.Â

    A prospective study of maternal factors and perinatal outcome of preterm birth

    Get PDF
    Background: Preterm birth (PTB) is a leading cause of perinatal morbidity and mortality, henceforth being a major concern for the obstetricians and paediatricians as well being a major health care issue. Preventing and treating the associated risk factors could play a major role in curbing the perinatal morbidity and mortality.Methods: A total 100 women with preterm labour or an indicated preterm termination of pregnancy were enrolled in the study. They were evaluated by history taking, clinical examination, and ultrasonography. Corticosteroids were given to all the patients. Maternal risk factors, obstetric outcome and perinatal outcome till discharge were studied.Results: Of the 100 women studied, mean age of the cases was 27 years, 60% of the cases belonged to lower socio-economic class, 74% of the cases were under 55 kgs weight group and 77% of cases were anaemic. 34% cases were below 34 weeks of gestation, 58% were multigravida, and 2% grand multipara with 35% labour being induced labour because of presence of various risk factors such as preterm premature rupture of membranes (PPROM), pre-eclampsia, eclampsia and chorioamnionitis. 6% cases had multiple pregnancies and 8% had history of preterm delivery in previous pregnancy. Out of 107 babies, 73% neonates required neonatal intensive care unit (NICU) admission and there was 12.14% neonatal mortality rate.Conclusions: Anaemia, malnutrition, infection, high order pregnancy are the preventable causes of preterm birth which can be prevented, screened and treated by specialised antenatal programs

    LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

    Get PDF

    Challenges and opportunities for implementing integrated mental health care: a district level situation analysis from five low- and middle-income countries.

    Get PDF
    BACKGROUND: Little is known about how to tailor implementation of mental health services in low- and middle-income countries (LMICs) to the diverse settings encountered within and between countries. In this paper we compare the baseline context, challenges and opportunities in districts in five LMICs (Ethiopia, India, Nepal, South Africa and Uganda) participating in the PRogramme for Improving Mental health carE (PRIME). The purpose was to inform development and implementation of a comprehensive district plan to integrate mental health into primary care. METHODS: A situation analysis tool was developed for the study, drawing on existing tools and expert consensus. Cross-sectional information obtained was largely in the public domain in all five districts. RESULTS: The PRIME study districts face substantial contextual and health system challenges many of which are common across sites. Reliable information on existing treatment coverage for mental disorders was unavailable. Particularly in the low-income countries, many health service organisational requirements for mental health care were absent, including specialist mental health professionals to support the service and reliable supplies of medication. Across all sites, community mental health literacy was low and there were no models of multi-sectoral working or collaborations with traditional or religious healers. Nonetheless health system opportunities were apparent. In each district there was potential to apply existing models of care for tuberculosis and HIV or non-communicable disorders, which have established mechanisms for detection of drop-out from care, outreach and adherence support. The extensive networks of community-based health workers and volunteers in most districts provide further opportunities to expand mental health care. CONCLUSIONS: The low level of baseline health system preparedness across sites underlines that interventions at the levels of health care organisation, health facility and community will all be essential for sustainable delivery of quality mental health care integrated into primary care

    Impact of district mental health care plans on symptom severity and functioning of patients with priority mental health conditions: the Programme for Improving Mental Health Care (PRIME) cohort protocol

    Get PDF
    Background: The Programme for Improving Mental Health Care (PRIME) sought to implement mental health care plans (MHCP) for four priority mental disorders (depression, alcohol use disorder, psychosis and epilepsy) into routine primary care in five low- and middle-income country districts. The impact of the MHCPs on disability was evaluated through establishment of priority disorder treatment cohorts. This paper describes the methodology of these PRIME cohorts. Methods: One cohort for each disorder was recruited across some or all five districts: Sodo (Ethiopia), Sehore (India) , Chitwan (Nepal), Dr. Kenneth Kaunda (South Africa) and Kamuli (Uganda), comprising 17 treatment cohorts in total (N = 2182). Participants were adults residing in the districts who were eligible to receive mental health treatment according to primary health care staff, trained by PRIME facilitators as per the district MHCP. Patients who screened positive for depression or AUD and who were not given a diagnosis by their clinicians (N = 709) were also recruited into comparison cohorts in Ethiopia, India, Nepal and South Africa. Caregivers of patients with epilepsy or psychosis were also recruited (N = 953), together with or on behalf of the person with a mental disorder, depending on the district. The target sample size was 200 (depression and AUD), or 150 (psychosis and epilepsy) patients initiating treatment in each recruiting district. Data collection activities were conducted by PRIME research teams. Participants completed follow-up assessments after 3 months (AUD and depression) or 6 months (psychosis and epilepsy), and after 12 months. Primary outcomes were impaired functioning, using the 12-item World Health Organization Disability Assessment Schedule 2.0 (WHODAS), and symptom severity, assessed using the Patient Health Questionnaire (depression), the Alcohol Use Disorder Identification Test (AUD), and number of seizures (epilepsy). Discussion: Cohort recruitment was a function of the clinical detection rate by primary health care staff, and did not meet all planned targets. The cross-country methodology reflected the pragmatic nature of the PRIME cohorts: while the heterogeneity in methods of recruitment was a consequence of differences in health systems and MHCPs, the use of the WHODAS as primary outcome measure will allow for comparison of functioning recovery across sites and disorders

    Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma

    Get PDF
    Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133−181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential
    • …
    corecore