1,556 research outputs found
Improved efficiency of nutrient and water use for high quality field vegetable production using fertigation
Drip-based fertigation may improve the application efficiency of water and nutrients while maintaining or improving marketable yield and quality at harvest and post-harvest. Two plantings of lettuce (Lactuca sativa) were grown in the UK, with six N treatments and two methods of irrigation and N application. The conventional overhead irrigated treatments had all N applied in the base dressing with irrigation scheduled from SMD calculations. The closed loop treatments had nitrogen and irrigation delivered via drip automatically controlled by a sensor and logger system. The work established that water content in the root zone can be monitored in real time using horizontally oriented soil moisture sensors linked to data logging and telemetry, and that these data can be used to automatically trigger drip irrigation for commercially grown field vegetables. When the closed loop irrigation control was combined with fertigation treatments, lettuce crops were grown with savings of up to 60% and 75% of water and nitrogen respectively, compared to standard UK production systems. However, excess supply of N through fertigation rather than solid fertiliser was more detrimental to marketable yield and post harvest quality highlighting that care is needed when selecting N rates for fertigation
Positionally dependent ^(15)N fraction factors in the UV photolysis of N_2O determined by high resolution FTIR spectroscopy
Positionally dependent fractionation factors for the photolysis of isotopomers of N_2O in natural abundance have been determined by high resolution FTIR spectroscopy at three photolysis wavelengths. Fractionation factors show clear 15N position and photolysis wavelength dependence and are in qualitative agreement with theoretical models but are twice as large. The fractionation factors increase with photolysis wavelength from 193 to 211 nm, with the fractionation factors at 207.6 nm for ^(14)N^(15)N^916)O, ^(15)N^(14)N^(16)O and ^(14)N^(14)N^(18)O equal to −66.5±5‰,−27.1±6‰ and −49±10‰, respectively
Do long delay conditioned stimuli develop inhibitory properties?
In long-delay conditioning, a long conditioned stimulus (CS) is paired in its final segments with an unconditioned stimulus. With sufficient training, this procedure usually results in conditioned responding being delayed until the final segment of the CS, a pattern of responding known as inhibition of delay. However, there have been no systematic investigations of the associative structure of long delay conditioning, and whether the initial segment of a long delay CS actually becomes inhibitory is debatable. In an appetitive preparation with rat subjects, the initial segment of long delay CS A passed a retardation (Experiment 1a) but not a summation (Experiment 1b) test for conditioned inhibition. Furthermore, retardation was observed only if long delay conditioning and retardation training occurred in the same context (Experiment 2). Thus, the initial segment of a long delay CS appears to share more characteristics with a latent inhibitor than a conditioned inhibitor. Componential theories of conditioning appear best suited to account for these results
Topological aspects of multi-k antiferromagnetism in cubic rare-earth compounds
We advertise rare-earth intermetallics with high-symmetry crystal structures and competing interactions as a possible materials platform hosting spin structures with non-trivial topological properties. Focusing on the series of cubic RCu compounds, where R = Ho, Er, Tm, the bulk properties of these systems display exceptionally rich magnetic phase diagrams hosting an abundance of different phase pockets characteristic of antiferromagnetic order in the presence of delicately balanced interactions. The electrical transport properties exhibit large anomalous contributions suggestive of topologically non-trivial winding in the electronic and magnetic structures. Neutron diffraction identifies spontaneous long-range magnetic order in terms of commensurate and incommensurate variations of ππ0 antiferromagnetism with the possibility for various multi-k configurations. Motivated by general trends in these materials, we discuss the possible existence of topologically non-trivial winding in real and reciprocal space in the class of RCu compounds including antiferromagnetic skyrmion lattices. Putatively bringing together different limits of non-trivial topological winding in the same material, the combination of properties in RCu systems promises access to advanced functionalities
A New Perspective on Coastally Trapped Disturbances Using Data from the Satellite Era
The ability of global climate models to simulate accurately marine stratiform clouds continues to challenge the atmospheric science community. These cloud types, which account for a large uncertainty in Earth’s radiation budget, are generally difficult to characterize due to their shallowness and spatial inhomogeneity. Previous work investigating marine boundary layer (MBL) clouds off the California coast has focused on clouds that form under the typical northerly flow regime during the boreal warm season. From about June through September, however, these northerly winds may reverse and become southerly as part of a coastally trapped disturbance (CTD). As the flow surges northward, it is accompanied by a broad cloud deck. Because these events are difficult to forecast, in situ observations of CTDs are few and far between, and little is known about their cloud physical properties. A climatological perspective of 23 CTD events—spanning the years from 2004 to 2016—is presented using several data products, including model reanalyses, buoys, and satellites. For the first time, satellite retrievals suggest that CTD cloud decks may play a unique role in the radiation budget due to a combination of aerosol sources that enhance cloud droplet number concentration and reduce cloud droplet effective radius. This particular type of cloud regime should therefore be treated differently than that which is more commonly found in the summertime months over the northeast Pacific Ocean. The potential influence of a coherent wind stress cycle on sea surface temperatures and sea salt aerosol is also explored
Exact Performance of Concatenated Quantum Codes
When a logical qubit is protected using a quantum error-correcting code, the
net effect of coding, decoherence (a physical channel acting on qubits in the
codeword) and recovery can be represented exactly by an effective channel
acting directly on the logical qubit. In this paper we describe a procedure for
deriving the map between physical and effective channels that results from a
given coding and recovery procedure. We show that the map for a concatenation
of codes is given by the composition of the maps for the constituent codes.
This perspective leads to an efficient means for calculating the exact
performance of quantum codes with arbitrary levels of concatenation. We present
explicit results for single-bit Pauli channels. For certain codes under the
symmetric depolarizing channel, we use the coding maps to compute exact
threshold error probabilities for achievability of perfect fidelity in the
infinite concatenation limit.Comment: An expanded presentation of the analytic methods and results from
quant-ph/0111003; 13 pages, 6 figure
A quantum phase transition from triangular to stripe charge order in NbSe
The competition between proximate electronic phases produces a complex
phenomenology in strongly correlated systems. In particular, fluctuations
associated with periodic charge or spin modulations, known as density waves,
may lead to exotic superconductivity in several correlated materials. However,
density waves have been difficult to isolate in the presence of chemical
disorder, and the suspected causal link between competing density wave orders
and high temperature superconductivity is not understood. Here we use scanning
tunneling microscopy to image a previously unknown unidirectional (stripe)
charge density wave (CDW) smoothly interfacing with the familiar
tri-directional (triangular) CDW on the surface of the stoichiometric
superconductor NbSe. Our low temperature measurements rule out thermal
fluctuations, and point to local strain as the tuning parameter for this
quantum phase transition. We use this discovery to resolve two longstanding
debates about the anomalous spectroscopic gap and the role of Fermi surface
nesting in the CDW phase of NbSe. Our results highlight the importance of
local strain in governing phase transitions and competing phenomena, and
suggest a new direction of inquiry for resolving similarly longstanding debates
in cuprate superconductors and other strongly correlated materials.Comment: PNAS in pres
Cohomology of Line Bundles: Applications
Massless modes of both heterotic and Type II string compactifications on
compact manifolds are determined by vector bundle valued cohomology classes.
Various applications of our recent algorithm for the computation of line bundle
valued cohomology classes over toric varieties are presented. For the heterotic
string, the prime examples are so-called monad constructions on Calabi-Yau
manifolds. In the context of Type II orientifolds, one often needs to compute
equivariant cohomology for line bundles, necessitating us to generalize our
algorithm to this case. Moreover, we exemplify that the different terms in
Batyrev's formula and its generalizations can be given a one-to-one
cohomological interpretation.
This paper is considered the third in the row of arXiv:1003.5217 and
arXiv:1006.2392.Comment: 56 pages, 8 tables, cohomCalg incl. Koszul extension available at
http://wwwth.mppmu.mpg.de/members/blumenha/cohomcalg
An Atmospheric Hydraulic Jump in the Santa Barbara Channel
As part of the Precision Atmospheric Marine Boundary Layer Experiment, the University of Wyoming King Air sampled an atmospheric environment conducive to the formation of a hydraulic jump on 24 May 2012 off the coast of California. Strong, northwesterly flow rounded the Point Arguello–Point Conception complex and encountered the remnants of an eddy circulation in the Santa Barbara Channel. The aircraft flew an east–west vertical sawtooth pattern that captured a sharp thinning of the marine boundary layer and the downstream development of a hydraulic jump. In situ observations show a dramatic rise in isentropes and a coincident sudden decrease in wind speeds. Imagery from the Wyoming Cloud Lidar clearly depicts the jump feature via copolarization and depolarization returns. Estimations of MBL depth are used to calculate the upstream Froude number from hydraulic theory. Simulations using the Weather Research and Forecasting Model produced results in agreement with the observations. The innermost domain uses a 900-m horizontal grid spacing and encompasses the transition from supercritical to subcritical flow south of Point Conception. Upstream Froude number estimations from the model compare well to observations. A strongly divergent wind field, consistent with expansion fan dynamics, is present upwind of the hydraulic jump. The model accurately resolves details of the marine boundary layer collapse into the jump. Results from large-eddy simulations show a large increase in the turbulent kinetic energy field coincident with the hydraulic jump
- …