20 research outputs found
Improved HSC reconstitution and protection from inflammatory stress and chemotherapy in mice lacking granzyme B.
The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity. In addition, recipients deficient in GzmB support superior engraftment of wild-type HSCs compared with hosts with normal BM niches. Stimulation of mice with lipopolysaccharide strongly induced GzmB protein expression in HSCs, which was mediated by the TLR4-TRIF-p65 NF-κB pathway. This is associated with increased cell death and GzmB secretion into the BM environment, suggesting an extracellular role of GzmB in modulating HSC niches. Moreover, treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) also induces GzmB production in HSCs. In this situation GzmB is not secreted, but instead causes cell-autonomous apoptosis. Accordingly, GzmB-deficient mice are more resistant to serial 5-FU treatments. Collectively, these results identify GzmB as a negative regulator of HSC function that is induced by stress and chemotherapy in both HSCs and their niches. Blockade of GzmB production may help to improve hematopoiesis in various situations of BM stress
Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms
Janus kinases (JAKs) mediate responses to cytokines, hormones and growth factors in haematopoietic cells. The JAK gene JAK2 is frequently mutated in the ageing haematopoietic system and in haematopoietic cancers. JAK2 mutations constitutively activate downstream signalling and are drivers of myeloproliferative neoplasm (MPN). In clinical use, JAK inhibitors have mixed effects on the overall disease burden of JAK2-mutated clones, prompting us to investigate the mechanism underlying disease persistence. Here, by in-depth phosphoproteome profiling, we identify proteins involved in mRNA processing as targets of mutant JAK2. We found that inactivation of YBX1, a post-translationally modified target of JAK2, sensitizes cells that persist despite treatment with JAK inhibitors to apoptosis and results in RNA mis-splicing, enrichment for retained introns and disruption of the transcriptional control of extracellular signal-regulated kinase (ERK) signalling. In combination with pharmacological JAK inhibition, YBX1 inactivation induces apoptosis in JAK2-dependent mouse and primary human cells, causing regression of the malignant clones in vivo, and inducing molecular remission. This identifies and validates a cell-intrinsic mechanism whereby differential protein phosphorylation causes splicing-dependent alterations of JAK2-ERK signalling and the maintenance of JAK2(V617F) malignant clones. Therapeutic targeting of YBX1-dependent ERK signalling in combination with JAK2 inhibition could thus eradicate cells harbouring mutations in JAK2
Comparative RNAi Screens in Isogenic Human Stem Cells Reveal SMARCA4 as a Differential Regulator.
Large-scale RNAi screens are a powerful approach to identify functions of genes in a cell-type-specific manner. For model organisms, genetically identical (isogenic) cells from different cell types are readily available, making comparative studies meaningful. However, large-scale screens in isogenic human primary cells remain challenging. Here, we show that RNAi screens are possible in genetically identical human stem cells, using induced pluripotent stem cells as intermediates. The screens revealed SMARCA4 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4) as a stemness regulator, while balancing differentiation distinctively for each cell type. SMARCA4 knockdown in hematopoietic stem and progenitor cells caused impaired self-renewal in vitro and in vivo with skewed myeloid differentiation; whereas, in neural stem cells, it impaired self-renewal while biasing differentiation toward neural lineage, through combinatorial SWI/SNF subunit assembly. Our findings pose a powerful approach for deciphering human stem cell biology and attribute distinct roles to SMARCA4 in stem cell maintenance
Enhanced differentiation of functional human T cells in NSGW41 mice with tissue-specific expression of human interleukin-7.
Humanized mouse models have become increasingly valuable tools to study human hematopoiesis and infectious diseases. However, human T-cell differentiation remains inefficient. We generated mice expressing human interleukin-7 (IL-7), a critical growth and survival factor for T cells, under the control of murine IL-7 regulatory elements. After transfer of human cord blood-derived hematopoietic stem and progenitor cells, transgenic mice on the NSGW41 background, termed NSGW41hIL7, showed elevated and prolonged human cellularity in the thymus while maintaining physiological ratios of thymocyte subsets. As a consequence, numbers of functional human T cells in the periphery were increased without evidence for pathological lymphoproliferation or aberrant expansion of effector or memory-like T cells. We conclude that the novel NSGW41hIL7 strain represents an optimized mouse model for humanization to better understand human T-cell differentiation in vivo and to generate a human immune system with a better approximation of human lymphocyte ratios
Safety and Outcomes of Intravenous Thrombolytic Therapy in Ischemic Stroke Patients with COVID-19: CASCADE Initiative
Background: There is little information regarding the safety of intravenous tissue plasminogen activator (IV-tPA) in patients with stroke and COVID-19. Methods: This multicenter study included consecutive stroke patients with and without COVID-19 treated with IV-tPA between February 18, 2019, to December 31, 2020, at 9 centers participating in the CASCADE initiative. Clinical outcomes included modified Rankin Scale (mRS) at hospital discharge, in-hospital mortality, the rate of hemorrhagic transformation. Using Bayesian multiple regression and after adjusting for variables with significant value in univariable analysis, we reported the posterior adjusted odds ratio (OR, with 95% Credible Intervals [CrI]) of the main outcomes. Results: A total of 545 stroke patients, including 101 patients with COVID-19 were evaluated. Patients with COVID-19 had a more severe stroke at admission. In the study cohort, 85 (15.9%) patients had a hemorrhagic transformation, and 72 (13.1%) died in the hospital. After adjustment for confounding variables, discharge mRS score ≥2 (OR: 0.73, 95% CrI: 0.16, 3.05), in-hospital mortality (OR: 2.06, 95% CrI: 0.76, 5.53), and hemorrhagic transformation (OR: 1.514, 95% CrI: 0.66, 3.31) were similar in COVID-19 and non COVID-19 patients. High-sensitivity C reactive protein level was a predictor of hemorrhagic transformation in all cases (OR:1.01, 95%CI: 1.0026, 1.018), including those with COVID-19 (OR:1.024, 95%CI:1.002, 1.054). Conclusion: IV-tPA treatment in patients with acute ischemic stroke and COVID-19 was not associated with an increased risk of disability, mortality, and hemorrhagic transformation compared to those without COVID-19. IV-tPA should continue to be considered as the standard of care in patients with hyper acute stroke and COVID-19
Improved HSC reconstitution and protection from inflammatory stress and chemotherapy in mice lacking granzyme B
The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity. In addition, recipients deficient in GzmB support superior engraftment of wild-type HSCs compared with hosts with normal BM niches. Stimulation of mice with lipopolysaccharide strongly induced GzmB protein expression in HSCs, which was mediated by the TLR4–TRIF–p65 NF-κB pathway. This is associated with increased cell death and GzmB secretion into the BM environment, suggesting an extracellular role of GzmB in modulating HSC niches. Moreover, treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) also induces GzmB production in HSCs. In this situation GzmB is not secreted, but instead causes cell-autonomous apoptosis. Accordingly, GzmB-deficient mice are more resistant to serial 5-FU treatments. Collectively, these results identify GzmB as a negative regulator of HSC function that is induced by stress and chemotherapy in both HSCs and their niches. Blockade of GzmB production may help to improve hematopoiesis in various situations of BM stress
Safety and outcomes of intravenous thrombolytic therapy in ischemic stroke patients with COVID-19: CASCADE initiative
BACKGROUND: There is little information regarding the safety of intravenous tissue plasminogen activator (IV-tPA) in patients with stroke and COVID-19. METHODS: This multicenter study included consecutive stroke patients with and without COVID-19 treated with IV-tPA between February 18, 2019, to December 31, 2020, at 9 centers participating in the CASCADE initiative. Clinical outcomes included modified Rankin Scale (mRS) at hospital discharge, in-hospital mortality, the rate of hemorrhagic transformation. Using Bayesian multiple regression and after adjusting for variables with significant value in univariable analysis, we reported the posterior adjusted odds ratio (OR, with 95% Credible Intervals [CrI]) of the main outcomes. RESULTS: A total of 545 stroke patients, including 101 patients with COVID-19 were evaluated. Patients with COVID-19 had a more severe stroke at admission. In the study cohort, 85 (15.9%) patients had a hemorrhagic transformation, and 72 (13.1%) died in the hospital. After adjustment for confounding variables, discharge mRS score ≥2 (OR: 0.73, 95% CrI: 0.16, 3.05), in-hospital mortality (OR: 2.06, 95% CrI: 0.76, 5.53), and hemorrhagic transformation (OR: 1.514, 95% CrI: 0.66, 3.31) were similar in COVID-19 and non COVID-19 patients. High-sensitivity C reactive protein level was a predictor of hemorrhagic transformation in all cases (OR:1.01, 95%CI: 1.0026, 1.018), including those with COVID-19 (OR:1.024, 95%CI:1.002, 1.054). CONCLUSION: IV-tPA treatment in patients with acute ischemic stroke and COVID-19 was not associated with an increased risk of disability, mortality, and hemorrhagic transformation compared to those without COVID-19. IV-tPA should continue to be considered as the standard of care in patients with hyper acute stroke and COVID-19