2 research outputs found

    Deep Learning-Based TEM Image Analysis for Fully Automated Detection of Gold Nanoparticles Internalized Within Tumor Cell

    Get PDF
    Transmission electron microscopy (TEM) imaging can be used for detection/localization of gold nanoparticles (GNPs) within tumor cells. However, quantitative analysis of GNP-containing cellular TEM images typically relies on conventional/thresholding-based methods, which are manual, time-consuming, and prone to human errors. In this study, therefore, deep learning (DL)-based methods were developed for fully automated detection of GNPs from cellular TEM images. Several models of you only look once (YOLO) v5 were implemented, with a few adjustments to enhance the model\u27s performance by applying the transfer learning approach, adjusting the size of the input image, and choosing the best optimization algorithm. Seventy-eight original (12,040 augmented) TEM images of GNP-laden tumor cells were used for model implementation and validation. A maximum F1 score (harmonic mean of the precision and recall) of 0.982 was achieved by the best-trained models, while mean average precision was 0.989 and 0.843 at 0.50 and 0.50-0.95 intersection over union threshold, respectively. These results suggested the developed DL-based approach was capable of precisely estimating the number/position of internalized GNPs from cellular TEM images. A novel DL-based TEM image analysis tool from this study will benefit research/development efforts on GNP-based cancer therapeutics, for example, by enabling the modeling of GNP-laden tumor cells using nanometer-resolution TEM images

    Uncloaking Cell-Impermeant Gold Nanorods via Tumor Microenvironmental Cathepsin B Facilitates Cancer Cell Penetration and Potent Radiosensitization

    Get PDF
    Major impediments to conveyance of intravenously administered drugs to tumors are biofouling, opsonization, and rapid clearance from the circulation by macrophages and reticuloendothelial phagocytes. Cloaking nanoparticles with stealth epilayers partly overcomes these hurdles but it also foils interactions with tumor cells. Here, we describe the synthesis, characterization, and validation of smart gold nanorods (GNRs) that spontaneously transform from inert passengers in the blood stream to active cell-penetrating nanoparticles within tumors to potently sensitize tumors to radiation therapy. Intrinsically cationic and cell-penetrating GNRs were shielded from phagocytosis with a cloaking polyethylene glycol epilayer containing an intervening cleavable peptide. In the absence of an external trigger, this epilayer is clipped off by the tumor microenvironmental protease, cathepsin B, in colorectal cancers to uncloak and expose the free-circulating native unPEGylated GNR that is readily internalized by cancer cells and turn into immovable small clusters of GNRs. Selective uncloaking of GNRs in the tumor reduced off-target toxicity confirmed by hematologic, biochemical, and histopathological analysis of blood, serum, and normal organs, respectively. Subsequent irradiation led to significant tumor growth delay and improved survival of mice. By addressing multiple barriers to efficient transport and cellular internalization of nanoparticles, our results demonstrate that clinically meaningful radiosensitization can be achieved with rationally designed GNRs
    corecore