12 research outputs found

    Some Amino Acids Affect the Response of Grape (Vitis vinifera L.) Single Nodules In Vitro Multiplication

    Get PDF
    Organic nitrogen, which comes from amino acids, is absorbed and transported more rapidly than inorganic nitrogen by plant cells and tissues. Therefore, this study was conducted to evaluate the effect of some amino acids on the response of single nodes of grape Vitis vinifera L. Superior and Red globe cultivars were classified for in vitro multiplication to develop an efficient protocol for propagation of these two valuable species. The study included two experiments: first, the effect of adding three concentrations (0, 0.5, and 1) mg L-1 of Benzyl Adenine (BA) to the MS medium in the initiation stage. The second investigation utilized three amino acid types (glutamine, asparagine, and methionine) at five concentrations (0, 10, 20, 40, and 80) mg L-1 added to MS medium containing 2 mg L-1 of BA. Results indicated that the most significant newly initiated shoots (2.40 and 2.88) and the largest leaves number (7.90 and 5.88) for both cultivars, Superior and Red globe, respectively were obtained in a medium with 1 mg L-1 of BA. The multiplication results in eight weeks after cultivation showed that adding amino acid glutamine at 10 mg L-1 significantly increased the number of shoots/explant (6.60 and 6.00) and (29.50 and 38.30) leaves/explant for Red globe and Superior, respectively. The high amino acid concentrations (40 and 80) mg L-1 significantly reduced the studied growth parameters, especially the number of newly formed shoots. The results obtained from the present study exhibited the possibility of applying this modified protocol to the propagation of selected grape cultivars to encourage the expansion of the grape-growing industry in Iraq

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Novel mechanisms and functions of complement

    No full text
    Progress at the beginning of the 21st century transformed the perception of complement from that of a blood-based antimicrobial system to that of a global regulator of immunity and tissue homeostasis. More recent years have witnessed remarkable advances in structure-function insights and understanding of the mechanisms and locations of complement activation, which have added new layers of complexity to the biology of complement. This complexity is readily reflected by the multifaceted and contextual involvement of complement-driven networks in a wide range of inflammatory and neurodegenerative disorders and cancer. This Review provides an updated view of new and previously unanticipated functions of complement and how these affect immunity and disease pathogenesis
    corecore