136 research outputs found
MAP1272c Encodes an NlpC/P60 Protein, an Antigen Detected in Cattle with Johne’s Disease
The protein encoded by MAP1272c has been shown to be an antigen of Mycobacterium avium subsp. paratuberculosis that con- tains an NlpC/P60 superfamily domain found in lipoproteins or integral membrane proteins. Proteins containing this domain have diverse enzymatic functions that include peptidases, amidases, and acetyltransferases. The NlpC protein was examined in comparison to over 100 recombinant proteins and showed the strongest antigenicity when analyzed with sera from cattle with Johne’s disease. To further localize the immunogenicity of NlpC, recombinant proteins representing defined regions were ex- pressed and evaluated with sera from cattle with Johne’s disease. The region from amino acids 74 to 279 was shown to be the most immunogenic. This fragment was also evaluated against a commercially available enzyme-linked immunosorbent assay (ELISA). Two monoclonal antibodies were produced in mice immunized with the full-length protein, and each recognized a dis- tinct epitope. These antibodies cross-reacted with proteins from other mycobacterial species and demonstrated variable sizes of the proteins expressed from these subspecies. Both antibodies were further analyzed, and their interaction with MAP1272c and MAP1204 was characterized by a solution-based, luminescent binding assay. These tools provide additional means to study a strong antigen of M. avium subsp. paratuberculosis
MAP1272c Encodes an NlpC/P60 Protein, an Antigen Detected in Cattle with Johne’s Disease
The protein encoded by MAP1272c has been shown to be an antigen of Mycobacterium avium subsp. paratuberculosis that con- tains an NlpC/P60 superfamily domain found in lipoproteins or integral membrane proteins. Proteins containing this domain have diverse enzymatic functions that include peptidases, amidases, and acetyltransferases. The NlpC protein was examined in comparison to over 100 recombinant proteins and showed the strongest antigenicity when analyzed with sera from cattle with Johne’s disease. To further localize the immunogenicity of NlpC, recombinant proteins representing defined regions were ex- pressed and evaluated with sera from cattle with Johne’s disease. The region from amino acids 74 to 279 was shown to be the most immunogenic. This fragment was also evaluated against a commercially available enzyme-linked immunosorbent assay (ELISA). Two monoclonal antibodies were produced in mice immunized with the full-length protein, and each recognized a dis- tinct epitope. These antibodies cross-reacted with proteins from other mycobacterial species and demonstrated variable sizes of the proteins expressed from these subspecies. Both antibodies were further analyzed, and their interaction with MAP1272c and MAP1204 was characterized by a solution-based, luminescent binding assay. These tools provide additional means to study a strong antigen of M. avium subsp. paratuberculosis
Blood borne transit of CJD from brain to gut at early stages of infection
BACKGROUND: In Creutzfeldt-Jakob disease (CJD) and other related transmissible spongiform encephalopathies it is critical to understand the various pathways by which the infectious agent spreads to different organs. METHODS: We injected a CJD agent into mice, either intracerebrally (ic) or intraperitoneally (ip) and monitored the progressive appearance of abnormal PrP in peripheral tissues over time. RESULTS: Abnormal PrP was detected in lymphoreticular tissues of the gastrointestinal tract as early as 28 to 32 days after infection by both routes. This change persisted until the terminal stages of disease. In contrast, abnormal PrP was not detected in brain or spinal cord until 80 to 120 days after ic inoculation, or until 170 days after ip inoculation. CONCLUSIONS: Brain lacks significant lymphatic drainage, and has little infectivity before 40 days, even after ic inoculation. Thus the infectious inoculum must spread to the gut by a vascular route, a direction opposite to that generally assumed. This interpretation is consistent with previous studies demonstrating white blood cell infectivity as well as perivascular PrP accumulations in CJD. Notably, enteric infection at early as well as later stages of disease, and regardless of the route of agent entry, implicates potential environmental spread by fecal matter
Predictive value of the QFR in detecting vulnerable plaques in non-flow limiting lesions: a combined analysis of the PROSPECT and IBIS-4 study
“This is a post-peer-review, pre-copyedit version of an article published in Int J Cardiovasc Imaging. The final authenticated version is available online at: https://doi.org/10.1007/s10554-020-01805-9”
Repetitive Immunization Enhances the Susceptibility of Mice to Peripherally Administered Prions
The susceptibility of humans and animals to prion infections is determined by the virulence of the infectious agent, by genetic modifiers, and by hitherto unknown host and environmental risk factors. While little is known about the latter two, the activation state of the immune system was surmised to influence prion susceptibility. Here we administered prions to mice that were repeatedly immunized by two initial injections of CpG oligodeoxynucleotides followed by repeated injections of bovine serum albumin/alum. Immunization greatly reduced the required dosage of peripherally administered prion inoculum necessary to induce scrapie in 50% of mice. No difference in susceptibility was observed following intracerebral prion challenge. Due to its profound impact onto scrapie susceptibility, the host immune status may determine disease penetrance after low-dose prion exposure, including those that may give rise to iatrogenic and variant Creutzfeldt-Jakob disease
The POM Monoclonals: A Comprehensive Set of Antibodies to Non-Overlapping Prion Protein Epitopes
PrPSc, a misfolded and aggregated form of the cellular prion protein PrPC, is the only defined constituent of the transmissible agent causing prion diseases. Expression of PrPC in the host organism is necessary for prion replication and for prion neurotoxicity. Understanding prion diseases necessitates detailed structural insights into PrPC and PrPSc. Towards this goal, we have developed a comprehensive collection of monoclonal antibodies denoted POM1 to POM19 and directed against many different epitopes of mouse PrPC. Three epitopes are located within the N-terminal octarepeat region, one is situated within the central unstructured region, and four epitopes are discontinuous within the globular C-proximal domain of PrPC. Some of these antibodies recognize epitopes that are resilient to protease digestion in PrPSc. Other antibodies immunoprecipitate PrPC, but not PrPSc. A third group was found to immunoprecipitate both PrP isoforms. Some of the latter antibodies could be blocked with epitope-mimicking peptides, and incubation with an excess of these peptides allowed for immunochromatography of PrPC and PrPSc. Amino-proximal antibodies were found to react with repetitive PrPC epitopes, thereby vastly increasing their avidity. We have also created functional single-chain miniantibodies from selected POMs, which retained the binding characteristics despite their low molecular mass. The POM collection, thus, represents a unique set of reagents allowing for studies with a variety of techniques, including western blotting, ELISA, immunoprecipitation, conformation-dependent immunoassays, and plasmon surface plasmon resonance-based assays
Plasmacytoid Dendritic Cells Sequester High Prion Titres at Early Stages of Prion Infection
In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles
In Vivo Generation of Neurotoxic Prion Protein: Role for Hsp70 in Accumulation of Misfolded Isoforms
Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrPC; in older flies, PrP misfolds, acquires biochemical and structural properties of PrPSc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrPSc-specific conformational epitopes. In contrast to PrPSc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrPSc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrPSc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrPSc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders
A Cellular Potts Model simulating cell migration on and in matrix environments
Cell migration on and through extracellular matrix plays a critical role in a wide variety of physiological and pathological phenomena, and in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, gap size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migratory phenotype on both two-dimensional substrates and within three-dimensional environments, in a close comparison with experimental evidence. As distinct features of our approach, the cells are represented by compartmentalized discrete objects, differentiated in the nucleus and in the cytosolic region, while the extracellular matrix is composed of a fibrous mesh and of a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological ECM distribution and, further, a biphasic dependence of migration on the matrix density, and in part adhesion, in both two-dimensional and three-dimensional settings. Moreover, we demonstrate that the directional component of cell movement is strongly correlated with the topological distribution of the ECM fibrous network. In the three-dimensional networks, we also investigate the effects of the matrix mechanical microstructure, observing that, at a given distribution of fibers, cell motility has a subtle bimodal relation with the elasticity of the scaffold. Finally, cell locomotion requires deformation of the cell's nucleus and/or cell-derived proteolysis of steric fibrillar obstacles within rather rigid matrices characterized by small pores, not, however, for sufficiently large pores. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomen in health, disease and tissue engineering applications. The research that led to the present paper was partially supported by a grant of the group GNFM of INdA
Mechanical Strain Stabilizes Reconstituted Collagen Fibrils against Enzymatic Degradation by Mammalian Collagenase Matrix Metalloproteinase 8 (MMP-8)
Collagen, a triple-helical, self-organizing protein, is the predominant structural protein in mammals. It is found in bone, ligament, tendon, cartilage, intervertebral disc, skin, blood vessel, and cornea. We have recently postulated that fibrillar collagens (and their complementary enzymes) comprise the basis of a smart structural system which appears to support the retention of molecules in fibrils which are under tensile mechanical strain. The theory suggests that the mechanisms which drive the preferential accumulation of collagen in loaded tissue operate at the molecular level and are not solely cell-driven. The concept reduces control of matrix morphology to an interaction between molecules and the most relevant, physical, and persistent signal: mechanical strain.The investigation was carried out in an environmentally-controlled microbioreactor in which reconstituted type I collagen micronetworks were gently strained between micropipettes. The strained micronetworks were exposed to active matrix metalloproteinase 8 (MMP-8) and relative degradation rates for loaded and unloaded fibrils were tracked simultaneously using label-free differential interference contrast (DIC) imaging. It was found that applied tensile mechanical strain significantly increased degradation time of loaded fibrils compared to unloaded, paired controls. In many cases, strained fibrils were detectable long after unstrained fibrils were degraded.In this investigation we demonstrate for the first time that applied mechanical strain preferentially preserves collagen fibrils in the presence of a physiologically-important mammalian enzyme: MMP-8. These results have the potential to contribute to our understanding of many collagen matrix phenomena including development, adaptation, remodeling and disease. Additionally, tissue engineering could benefit from the ability to sculpt desired structures from physiologically compatible and mutable collagen
- …