22 research outputs found
Population history from the Neolithic to present on the Mediterranean island of Sardinia: an ancient DNA perspective
Recent ancient DNA studies of western Eurasia have revealed a dynamic history of admixture, with evidence for major migrations during the Neolithic and Bronze Age. The population of the Mediterranean island of Sardinia has been notable in these studies â} Neolithic individuals from mainland Europe cluster more closely with Sardinian individuals than with all other present-day Europeans. The current model to explain this result is that Sardinia received an initial influx of Neolithic ancestry and then remained relatively isolated from expansions in the later Neolithic and Bronze Age that took place in continental Europe. To test this model, we generated genome-wide capture data (approximately 1.2 million variants) for 43 ancient Sardinian individuals spanning the Neolithic through the Bronze Age, including individuals from Sardinia{â}s Nuragic culture, which is known for the construction of numerous large stone towers throughout the island. We analyze these new samples in the context of previously generated genome-wide ancient DNA data from 972 ancient individuals across western Eurasia and whole-genome sequence data from approximately 1,500 modern individuals from Sardinia. The ancient Sardinian individuals show a strong affinity to western Mediterranean Neolithic populations and we infer a high degree of genetic continuity on the island from the Neolithic (around fifth millennium BCE) through the Nuragic period (second millennium BCE). In particular, during the Bronze Age in Sardinia, we do not find significant levels of the {â}Steppe{â ancestry that was spreading in many other parts of Europe at that time. We also characterize subsequent genetic influx between the Nuragic period and the present. We detect novel, modest signals of admixture between 1,000 BCE and present-day, from ancestry sources in the eastern and northern Mediterranean. Within Sardinia, we confirm that populations from the more geographically isolated mountainous provinces have experienced elevated levels of genetic drift and that northern and southwestern regions of the island received more gene flow from outside Sardinia. Overall, our genetic analysis sheds new light on the origin of Neolithic settlement on Sardinia, reinforces models of genetic continuity on the island, and provides enhanced power to detect post-Bronze-Age gene flow. Together, these findings offer a refined demographic model for future medical genetic studies in Sardinia
Genomic and dietary transitions during the Mesolithic and Early Neolithic in Sicily
Southern Italy is a key region for understanding the agricultural transition in the Mediterranean due to its central position. We present a genomic transect for 19 prehistoric Sicilians that covers the Early Mesolithic to Early Neolithic period. We find that the Early Mesolithic hunter-gatherers (HGs) are a highly drifted sister lineage to Early Holocene western European HGs, whereas a quarter of the Late Mesolithic HGs ancestry is related to HGs from eastern Europe and the Near East. This indicates substantial gene flow from (south-)eastern Europe between the Early and Late Mesolithic. The Early Neolithic farmers are genetically most similar to those from the Balkan and Greece, and carry only a maximum of ~7% ancestry from Sicilian Mesolithic HGs. Ancestry changes match changes in dietary profile and material culture, except for two individuals who may provide tentative initial evidence that HGs adopted elements of farming in Sicily
Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily
Summary Sicily is a key region for understanding the agricultural transition in the Mediterranean, due to its central position. Here, we present genomic and stable isotopic data for 19 prehistoric Sicilians covering the Mesolithic to Bronze Age periods (10,700-4,100 yBP). We find that Early Mesolithic hunter-gatherers (HGs) from Sicily are a highly drifted lineage of the Early Holocene western European HGs, while Late Mesolithic HGs carry âŒ20% ancestry related to northern and (south)eastern European HGs, indicating substantial gene flow. Early Neolithic farmers are genetically most similar to farmers from the Balkans and Greece, with only âŒ7% ancestry from local Mesolithic HGs. The genetic discontinuities during the Mesolithic and Early Neolithic match changes in material culture and diet. Three outlying individuals dated to âŒ8,000 yBP, however, suggest that hunter-gatherers interacted with incoming farmers at Grotta dellâUzzo, resulting in a mixed economy and diet for a brief interlude at the Mesolithic-Neolithic transition.- Introduction - Results -- Genetically-distinct groups of prehistoric Sicilians -- Genomic and dietary transitions in Sicily during the Mesolithic and Early Neolithic -- Did Sicilian Late Mesolithic foragers adopt some aspects of early farming? - Discussion -- Limitations of the stud
Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians
The Scythians were a multitude of horse-warrior nomad cultures dwelling in the Eurasian steppe during the first millennium BCE. Because of the lack of first-hand written records, little is known about the origins and relations among the different cultures. To address these questions, we produced genome-wide data for 111 ancient individuals retrieved from 39 archaeological sites from the first millennia BCE and CE across the Central Asian Steppe. We uncovered major admixture events in the Late Bronze Age forming the genetic substratum for two main Iron Age gene-pools emerging around the Altai and the Urals respectively. Their demise was mirrored by new genetic turnovers, linked to the spread of the eastern nomad empires in the first centuries CE. Compared to the high genetic heterogeneity of the past, the homogenization of the present-day Kazakhs gene pool is notable, likely a result of 400 years of strict exogamous social rules.Introduction Results - The IA transition in the Kazakh Steppe - Admixture modeling of IA steppe populations - Post-IA genetic turnovers in the Kazakh Steppe - Dating ancient admixture - Present-day Kazakhs Discussion Material and methods - Radiocarbon dating - DNA extraction, library preparations, and sequencing - Modern DNA genotyping and quality controls - Ancient DNA data processing -- Raw data -- Authentication and contamination estimate -- Genotyping -- Sex determination -- Genetic relatedness estimation - Uniparental haplogroup assignment - Population structure analyses - Individual labeling and population grouping criteria - F-statistics and ancestry modeling - Admixture dating - CHROMOPAINTER and fineSTRUCTURE analyse
The origin and legacy of the Etruscans through a 2000-year archeogenomic time transect
The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-Europeanâassociated steppe ancestry and the lack of recent Anatolian-related admixture among the putative nonâIndo-Europeanâspeaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations
The Anglo-Saxon migration and the formation of the early English gene pool
The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2â4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeansâincluding 278 individuals from Englandâalongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present- day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age Franc
Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
Modern humans have populated Europe for more than 45,000 years. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Open access funding provided by Max Planck Society. This project has received funding by the European Research Council under the European Unionâs Horizon 2020 research and innovation programme under grant agreements no. 803147-RESOLUTION (to S.T.), no. 771234-PALEoRIDER (to W.H.), no. 864358 (to K.M.), no. 724703 and no. 101019659 (to K.H.). K.H. is also supported by the Deutsche Forschungsgemeinschaft (DFG FOR 2237). E.A. has received funding from the Van de Kamp fonds. PACEA co-authors of this research benefited from the scientific framework of the University of Bordeauxâs IdEx Investments for the Future programme/GPR Human Past. A.G.-O. is supported by a RamĂłn y Cajal fellowship (RYC-2017-22558). L. Sineo, M.L. and D.C. have received funding from the Italian Ministry of University and Research (MUR) PRIN 2017 grants 20177PJ9XF and 20174BTC4R_002. H. Rougier received support from the College of Social and Behavioral Sciences of CSUN and the CSUN Competition for RSCA Awards. C.L.S. and T. Saupe received support from the European Union through the European Regional Development Fund (project no. 2014-2020.4.01.16-0030) and C.L.S. received support from the Estonian Research Council grant PUT (PRG243). S. Shnaider received support from the Russian Science Foundation (no. 19-78-10053).Peer reviewe
Honey bees and climate explain viral prevalence in wild bee communities on a continental scale
Viruses are omnipresent, yet the knowledge on drivers of viral prevalence in wild host populations
is often limited. Biotic factors, such as sympatric managed host species, as well as abiotic factors,
such as climatic variables, are likely to impact viral prevalence. Managed and wild bees, which harbor
several multi-host viruses with a mostly fecalâoral between-species transmission route, provide an
excellent system with which to test for the impact of biotic and abiotic factors on viral prevalence in
wild host populations. Here we show on a continental scale that the prevalence of three broad host
viruses: the AKI-complex (Acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus),
Deformed wing virus, and Slow bee paralysis virus in wild bee populations (bumble bees and solitary
bees) is positively related to viral prevalence of sympatric honey bees as well as being impacted by
climatic variables. The former highlights the need for good beekeeping practices, including Varroa
destructor management to reduce honey bee viral infection and hive placement. Furthermore, we
found that viral prevalence in wild bees is at its lowest at the extreme ends of both temperature and
precipitation ranges. Under predicted climate change, the frequency of extremes in precipitation and
temperature will continue to increase and may hence impact viral prevalence in wild bee communities.https://www.nature.com/srepdm2022Zoology and Entomolog
Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants
Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
: Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants