5,135 research outputs found

    Fast algorithms for combustion kinetics calculations: A comparison

    Get PDF
    To identify the fastest algorithm currently available for the numerical integration of chemical kinetic rate equations, several algorithms were examined. Findings to date are summarized. The algorithms examined include two general-purpose codes EPISODE and LSODE and three special-purpose (for chemical kinetic calculations) codes CHEMEQ, CRK1D, and GCKP84. In addition, an explicit Runge-Kutta-Merson differential equation solver (IMSL Routine DASCRU) is used to illustrate the problems associated with integrating chemical kinetic rate equations by a classical method. Algorithms were applied to two test problems drawn from combustion kinetics. These problems included all three combustion regimes: induction, heat release and equilibration. Variations of the temperature and species mole fraction are given with time for test problems 1 and 2, respectively. Both test problems were integrated over a time interval of 1 ms in order to obtain near-equilibration of all species and temperature. Of the codes examined in this study, only CREK1D and GCDP84 were written explicitly for integrating exothermic, non-isothermal combustion rate equations. These therefore have built-in procedures for calculating the temperature

    Comparison of numerical techniques for integration of stiff ordinary differential equations arising in combustion chemistry

    Get PDF
    The efficiency and accuracy of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations are compared. The methods examined include two general-purpose codes, EPISODE and LSODE, and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an interactive solution of the algebraic energy conservation equation to compute the temperature does not result in significant errors. In addition, this method is more efficient than evaluating the temperature by integrating its time derivative. Significant reductions in computational work are realized by updating the rate constants (k = at(supra N) N exp(-E/RT) only when the temperature change exceeds an amount delta T that is problem dependent. An approximate expression for the automatic evaluation of delta T is derived and is shown to result in increased efficiency

    A comparison of the efficiency of numerical methods for integrating chemical kinetic rate equations

    Get PDF
    A comparison of the efficiency of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations is presented. The methods examined include two general-purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK1D, and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations. An important finding is that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient than evaluating the temperature by integrating its time-derivative

    New integration techniques for chemical kinetic rate equations. 2: Accuracy comparison

    Get PDF
    A comparison of the accuracy of several techniques recently developed for solving stiff differential equations is presented. The techniques examined include two general purpose codes EEPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREKID, and GCKP84 developed specifically to solve chemical kinetic rate equations. The accuracy comparisons are made by applying these solution procedures to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. The comparisons show that LSODE is the most efficient code - in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for the temperature can be more accurate and efficient than computing the temperature by integrating its time derivative

    Physical and numerical sources of computational inefficiency in integration of chemical kinetic rate equations: Etiology, treatment and prognosis

    Get PDF
    The design of a very fast, automatic black-box code for homogeneous, gas-phase chemical kinetics problems requires an understanding of the physical and numerical sources of computational inefficiency. Some major sources reviewed in this report are stiffness of the governing ordinary differential equations (ODE's) and its detection, choice of appropriate method (i.e., integration algorithm plus step-size control strategy), nonphysical initial conditions, and too frequent evaluation of thermochemical and kinetic properties. Specific techniques are recommended (and some advised against) for improving or overcoming the identified problem areas. It is argued that, because reactive species increase exponentially with time during induction, and all species exhibit asymptotic, exponential decay with time during equilibration, exponential-fitted integration algorithms are inherently more accurate for kinetics modeling than classical, polynomial-interpolant methods for the same computational work. But current codes using the exponential-fitted method lack the sophisticated stepsize-control logic of existing black-box ODE solver codes, such as EPISODE and LSODE. The ultimate chemical kinetics code does not exist yet, but the general characteristics of such a code are becoming apparent

    CREKID: A computer code for transient, gas-phase combustion of kinetics

    Get PDF
    A new algorithm was developed for fast, automatic integration of chemical kinetic rate equations describing homogeneous, gas-phase combustion at constant pressure. Particular attention is paid to the distinguishing physical and computational characteristics of the induction, heat-release and equilibration regimes. The two-part predictor-corrector algorithm, based on an exponentially-fitted trapezoidal rule, includes filtering of ill-posed initial conditions, automatic selection of Newton-Jacobi or Newton iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm was found to compare favorably with LSODE on two representative test problems drawn from combustion kinetics
    corecore