1,453 research outputs found
Monitoring cardiovascular function in the primate under prolonged weightlessness
Monitoring cardiovascular function in primates under prolonged weightlessnes
Topological surface state under graphene for two-dimensional spintronics in air
Spin currents which allow for a dissipationless transport of information can
be generated by electric fields in semiconductor heterostructures in the
presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur
for electronic surface states of metals but these cannot exist but under
ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect ({\alpha}_R
~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin
splitting and spin polarization remain unaffected when Ir is covered with
graphene. The graphene protection is, in turn, sufficient for the spin-split
surface state to survive in ambient atmosphere. We discuss this result along
with evidences for a topological protection of the surface state.Comment: includes supplementary informatio
Probing two topological surface bands of Sb2Te3 by spin-polarized photoemission spectroscopy
Using high resolution spin- and angle-resolved photoemission spectroscopy, we
map the electronic structure and spin texture of the surface states of the
topological insulator Sb2Te3. In combination with density functional
calculations (DFT), we directly show that Sb2Te3 exhibits a partially occupied,
single spin-Dirac cone around the Fermi energy, which is topologically
protected. DFT obtains a spin polarization of the occupied Dirac cone states of
80-90%, which is in reasonable agreement with the experimental data after
careful background subtraction. Furthermore, we observe a strongly spin-orbit
split surface band at lower energy. This state is found at 0.8eV below the
Fermi level at the gamma-point, disperses upwards, and disappears at about
0.4eV below the Fermi level into two different bulk bands. Along the gamma-K
direction, the band is located within a spin-orbit gap. According to an
argument given by Pendry and Gurman in 1975, such a gap must contain a surface
state, if it is located away from the high symmetry points of the Brillouin
zone. Thus, the novel spin-split state is protected by symmetry, too.Comment: 8 pages, 10 figure
Generalized iterated wreath products of cyclic groups and rooted trees correspondence
Consider the generalized iterated wreath product where . We
prove that the irreducible representations for this class of groups are indexed
by a certain type of rooted trees. This provides a Bratteli diagram for the
generalized iterated wreath product, a simple recursion formula for the number
of irreducible representations, and a strategy to calculate the dimension of
each irreducible representation. We calculate explicitly fast Fourier
transforms (FFT) for this class of groups, giving literature's fastest FFT
upper bound estimate.Comment: 15 pages, to appear in Advances in the Mathematical Science
Anisotropic effect of warping on the lifetime broadening of topological surface states in angle-resolved photoemission from Bi2 Te3
We analyze the strong hexagonal warping of the Dirac cone of Bi2Te3 by angle-
resolved photoemission. Along Γ¯¯¯M¯¯¯, the dispersion deviates from a linear
behavior meaning that the Dirac cone is warped outwards and not inwards. We
show that this introduces an anisotropy in the lifetime broadening of the
topological surface state which is larger along Γ¯¯¯K¯¯¯. The result is not
consistent with an explanation by nesting properties. Based on the
theoretically predicted modifications of the ground-state spin texture of a
strongly warped Dirac cone, we propose spin-dependent scattering processes as
explanation for the anisotropic scattering rates. These results could help
paving the way for optimizing future spintronic devices using topological
insulators and controlling surface-scattering processes via external gate
voltages
Explicit Lie-Poisson integration and the Euler equations
We give a wide class of Lie-Poisson systems for which explicit, Lie-Poisson
integrators, preserving all Casimirs, can be constructed. The integrators are
extremely simple. Examples are the rigid body, a moment truncation, and a new,
fast algorithm for the sine-bracket truncation of the 2D Euler equations.Comment: 7 pages, compile with AMSTEX; 2 figures available from autho
Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization
A versatile method is described for the practical computation of the discrete
Fourier transforms (DFT) of a continuous function given by its values
at the points of a uniform grid generated by conjugacy classes
of elements of finite adjoint order in the fundamental region of
compact semisimple Lie groups. The present implementation of the method is for
the groups SU(2), when is reduced to a one-dimensional segment, and for
in multidimensional cases. This simplest case
turns out to result in a transform known as discrete cosine transform (DCT),
which is often considered to be simply a specific type of the standard DFT.
Here we show that the DCT is very different from the standard DFT when the
properties of the continuous extensions of these two discrete transforms from
the discrete grid points to all points are
considered. (A) Unlike the continuous extension of the DFT, the continuous
extension of (the inverse) DCT, called CEDCT, closely approximates
between the grid points . (B) For increasing , the derivative of CEDCT
converges to the derivative of . And (C), for CEDCT the principle of
locality is valid. Finally, we use the continuous extension of 2-dimensional
DCT to illustrate its potential for interpolation, as well as for the data
compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's
Repor
Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt
We report on a quantitative investigation of the spin-dependent quasiparticle
lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by
means of spin and angle-resolved photoemission spectroscopy. The experimental
spectra are compared in detail to state-of-the-art many-body calculations
within the dynamical mean field theory and the three-body scattering
approximation, including a full calculation of the one-step photoemission
process. From this comparison we conclude that although strong local many-body
Coulomb interactions are of major importance for the qualitative description of
correlation effects in Co, more sophisticated many-body calculations are needed
in order to improve the quantitative agreement between theory and experiment,
in particular concerning the linewidths. The quality of the overall agreement
obtained for Co indicates that the effect of non-local correlations becomes
weaker with increasing atomic number
Tolerance of topological surface states towards magnetic moments: Fe on Bi2Te3 and Bi2Se3
Topological insulators(1-8) are a novel form of matter which features
metallic surface states with quasirelativistic dispersion similar to
graphene(9). Unlike graphene, the locking of spin and momentum and the
protection by time-reversal symmetry(1-8) open up tremendous additional
possibilities for external control of transport properties(10-18). Here we show
by angle-resolved photoelectron spectroscopy that the topological sur-face
states of Bi2Te3 and Bi2Se3 are stable against the deposition of Fe without
opening a band gap. This stability extends to low submonolayer coverages
meaning that the band gap reported recently(19) for Fe on Bi2Se3 is incorrect
as well as to complete monolayers meaning that topological surface states can
very well exist at interfaces with ferromagnets in future devices.Comment: 10 pages, 3 figures, submitted to Nature Physics 22. July 201
Strain prioritization and genome mining for enediyne natural products
The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster. A genome neighborhood network allows prediction of new structural features and biosynthetic insights that could be exploited for enediyne discovery. We confirmed one clade as new C-1027 producers, with a significantly higher C-1027 titer than the original producer, and discovered a new family of enediyne natural products, the tiancimycins (TNMs), that exhibit potent cytotoxicity against a broad spectrum of cancer cell lines. Our results demonstrate the feasibility of rapid discovery of new enediynes from a large strain collection.
IMPORTANCE Recent advances in microbial genomics clearly revealed that the biosynthetic potential of soil actinomycetes to produce enediynes is underappreciated. A great challenge is to develop innovative methods to discover new enediynes and produce them in sufficient quantities for chemical, biological, and clinical investigations. This work demonstrated the feasibility of rapid discovery of new enediynes from a large strain collection. The new C-1027 producers, with a significantly higher C-1027 titer than the original producer, will impact the practical supply of this important drug lead. The TNMs, with their extremely potent cytotoxicity against various cancer cells and their rapid and complete cancer cell killing characteristics, in comparison with the payloads used in FDA-approved antibody-drug conjugates (ADCs), are poised to be exploited as payload candidates for the next generation of anticancer ADCs. Follow-up studies on the other identified hits promise the discovery of new enediynes, radically expanding the chemical space for the enediyne family
- …