696 research outputs found

    A Galactic Plane Relative Extinction Map from 2MASS

    Full text link
    We present three 14400 square degree relative extinction maps of the Galactic Plane (|b|<20degrees) obtained from 2MASS using accumulative star counts (Wolf diagrams). This method is independent of the colour of the stars and the variation of extinction with wavelength. Stars were counted in 3.5'x3.5' boxes, every 20". 1x1degree surrounding fields were chosen for reference, hence the maps represent local extinction enhancements and ignore any contribution from the ISM or very large clouds. Data reduction was performed on a Beowulf-type cluster (in approximately 120 hours). Such a cluster is ideal for this type of work as areas of the sky can be independently processed in parallel. We studied how extinction depends on wavelength in all of the high extinction regions detected and within selected dark clouds. On average a power law opacity index (\beta) of 1.0 to 1.8 in the NIR was deduced. The index however differed significantly from region to region and even within individual dark clouds. That said, generally it was found to be constant, or to increase, with wavelength within a particular region.Comment: 4 pages, 2 figures, A&A Letters accepted, version with high resolution figures at http://www.dias.ie/~d

    Optical spectra of selected Chamaeleon I young stellar objects

    Full text link
    We present optical spectra of eight candidate brown dwarfs and a previously known T Tauri star (Sz 33) of the Chamaeleon I dark cloud. We derived spectral types based on the strength of the TiO or VO absorption bands present in the spectra of these objects as well as on the PC3 index of Martin et al. (1999). Photometric data from the literature are used to estimate the bolometric luminosities for these sources. We apply D'Antona & Mazzitelli (1997) pre-main sequence evolutionary tracks and isochrones to derive masses and ages. Based on the presence of Halpha in emission, we confirm that most of the candidates are young objects. Our sample however includes two sources for which we can only provide upper limits for the emission in Halpha; whereas these two objects are most likely foreground/background stars, higher resolution spectra are required to confirm their true nature. Among the likely cloud members, we detect one new sub-stellar object and three transition stellar/sub-stellar sources.Comment: 22 pages - manuscript forma

    Quasistatic crack growth based on viscous approximation: a model with branching and kinking.

    Get PDF
    Employing the technique of vanishing viscosity and time rescaling, we show the existence of quasistatic evolutions of cracks in brittle materials in the setting of antiplane shear. The crack path is not prescribed a priori and is chosen in an admissible class of piecewise regular sets that allows for branching and kinking

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure

    Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    Full text link
    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigated. In this article, the AMADEUS system will be described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
    • …
    corecore