2,437 research outputs found
Basic Connection between Superconductivity and Superfluidity
A basic and inherently simple connection is shown to exist between
superconductivity and superfluidity. It is shown here that the author's
previously derived general equation which agrees well with the superconducting
transition temperatures for the heavy-electron superconductors, metallic
superconductors, oxide supercon- ductors, metallic hydrogen, and neutron stars,
also works well for the superfluid transition temperature of 2.6 mK for liquid
3He. Reasonable estimates are made from 10^-3 K to 10^9K -- a range of 12
orders of magnitude. The same paradigm applies to the superfluid transition
temperature of liquid 4He, but results in a slightly different equation. The
superfluid transition temperature for dilute solutions of 3He in superfluid 4He
is estimated to be ~ 1 to 10mK. This paradigm works well in detail for
metallic, cuprate, and organic superconductors.Comment: 16 pages, 2 figure
Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL_(61)
The newly commissioned laser guide star adaptive optics system at Keck Observatory has been used to discover and characterize the orbit of a satellite to the bright Kuiper Belt object 2003 EL_(61). Observations over a 6 month period show that the satellite has a semimajor axis of 49,500 ± 400 km, an orbital period of 49.12 ± 0.03 days, and an eccentricity of 0.050 ± 0.003. The inferred mass of the system is (4.2 ± 0.1) × 10^(21) kg, or ~32% of the mass of Pluto and 28.6% ± 0.7% of the mass of the Pluto-Charon system. Mutual occultations occurred in 1999 and will not occur again until 2138. The orbit is fully consistent neither with one tidally evolved from an earlier closer configuration nor with one evolved inward by dynamical friction from an earlier more distant configuration
Comment on "Local accumulation times for source, diffusion, and degradation models in two and three dimensions" [J. Chem. Phys. 138, 104121 (2013)]
In a recent paper, Gordon, Muratov, and Shvartsman studied a partial differential equation (PDE) model describing radially symmetric diffusion and degradation in two and three dimensions. They paid particular attention to the local accumulation time (LAT), also known in the literature as the mean action time, which is a spatially dependent timescale that can be used to provide an estimate of the time required for the transient solution to effectively reach steady state. They presented exact results for three-dimensional applications and gave approximate results for the two-dimensional analogue. Here we make two generalizations of Gordon, Muratov, and Shvartsman’s work:
(i) we present an exact expression for the LAT in any dimension and
(ii) we present an exact expression for the variance of the distribution.
The variance provides useful information regarding the spread about the mean that is not captured by the LAT. We conclude by describing further extensions of the model that were not considered by Gordon,Muratov, and Shvartsman. We have found that exact expressions for the LAT can also be derived for these important extensions..
Satellites of the largest Kuiper Belt objects
We have searched the four brightest objects in the Kuiper Belt for the presence of satellites using the newly commissioned Keck Observatory Laser Guide Star Adaptive Optics system. Satellites are seen around three of the four objects: Pluto (whose satellite Charon is well-known and whose recently discovered smaller satellites are too faint to be detected), 2003 EL61 (where a second satellite is seen in addition to the previously known satellite), and 2003 UB313 (where a satellite is seen for the first time). The object 2005 FY9, the brightest Kuiper Belt object (KBO) after Pluto, does not have a satellite detectable within 0".4 with a brightness of more than 1% of the primary. The presence of satellites around three of the four brightest KBOs is inconsistent with the fraction of satellites in the Kuiper Belt at large at the 99.2% confidence level, suggesting a different formation mechanism for these largest KBO satellites. The two satellites of 2003 EL61, and the one satellite of 2003 UB313, with fractional brightnesses of 5% and 1.5%, and 2%, of their primaries, respectively, are significantly fainter relative to their primaries than other known KBO satellites, again pointing to possible differences in their origin
The Rising Light Curves of Type Ia Supernovae
We present an analysis of the early, rising light curves of 18 Type Ia
supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF) and the
La Silla-QUEST variability survey (LSQ). We fit these early data flux using a
simple power-law to determine the time of first
light , and hence the rise-time from first light to
peak luminosity, and the exponent of the power-law rise (). We find a mean
uncorrected rise time of days, with individual SN rise-times
ranging from to days. The exponent n shows significant
departures from the simple 'fireball model' of (or ) usually assumed in the literature. With a mean value of , our data also show significant diversity from event to event. This
deviation has implications for the distribution of 56Ni throughout the SN
ejecta, with a higher index suggesting a lesser degree of 56Ni mixing. The
range of n found also confirms that the 56Ni distribution is not standard
throughout the population of SNe Ia, in agreement with earlier work measuring
such abundances through spectral modelling. We also show that the duration of
the very early light curve, before the luminosity has reached half of its
maximal value, does not correlate with the light curve shape or stretch used to
standardise SNe Ia in cosmological applications. This has implications for the
cosmological fitting of SN Ia light curves.Comment: 19 pages, 19 figures, accepted for publication in MNRA
Photometric Observations Constraining the Size, Shape, and Albedo of 2003 El61, a Rapidly Rotating, Pluto-Sized Object in the Kuiper Belt
We present measurements at optical wavelengths of the spectral reflectance,
rotational light curve, and solar phase curve of 2003 EL61. With apparent
visual magnitude 17.5 at 51 AU from the sun, this newly discovered member of
the classical Kuiper Belt is now the third brightest KBO after Pluto and 2005
FY9. Our observations reveal an unambiguous, double-peaked rotational light
curve with period 3.9154 +/- 0.0002 hours and peak to peak amplitude 0.28 +/-
0.04 mag. This is the fastest rotation period reliably determined for any body
in the solar system larger than 100 km. Assuming the body has relaxed over time
to the shape taken by a homogenous fluid body, our observations tightly
constrain the shape and density. Given the mass we recently determined for 2003
EL61 from the orbit of a small satellite, we also constrain the size and
albedo. We find a total length of 1960 to 2500 km, a mean density of 2600 to
3340 kg m-3, and a visual albedo greater than 0.6. We also measure a neutral
reflectance at visible wavelengths and a linear phase curve with slope varying
from 0.09 mag deg-1 in the B band to 0.13 mag deg-1 in the I band. The absolute
V-band magnitude is 0.444+/-0.021.Comment: 27 pages, six figure
Time Domain Explorations With Digital Sky Surveys
One of the new frontiers of astronomical research is the exploration of time
variability on the sky at different wavelengths and flux levels. We have
carried out a pilot project using DPOSS data to study strong variables and
transients, and are now extending it to the new Palomar-QUEST synoptic sky
survey. We report on our early findings and outline the methodology to be
implemented in preparation for a real-time transient detection pipeline. In
addition to large numbers of known types of highly variable sources (e.g., SNe,
CVs, OVV QSOs, etc.), we expect to find numerous transients whose nature may be
established by a rapid follow-up. Whereas we will make all detected variables
publicly available through the web, we anticipate that email alerts would be
issued in the real time for a subset of events deemed to be the most
interesting. This real-time process entails many challenges, in an effort to
maintain a high completeness while keeping the contamination low. We will
utilize distributed Grid services developed by the GRIST project, and implement
a variety of advanced statistical and machine learning techniques.Comment: 5 pages, 2 postscript figures, uses adassconf.sty. To be published
in: "ADASS XIV (2004)", Eds. Patrick Shopbell, Matthew Britton and Rick
Ebert, ASP Conference Serie
Initial Hubble Diagram Results from the Nearby Supernova Factory
The use of Type Ia supernovae as distance indicators led to the discovery of
the accelerating expansion of the universe a decade ago. Now that large second
generation surveys have significantly increased the size and quality of the
high-redshift sample, the cosmological constraints are limited by the currently
available sample of ~50 cosmologically useful nearby supernovae. The Nearby
Supernova Factory addresses this problem by discovering nearby supernovae and
observing their spectrophotometric time development. Our data sample includes
over 2400 spectra from spectral timeseries of 185 supernovae. This talk
presents results from a portion of this sample including a Hubble diagram
(relative distance vs. redshift) and a description of some analyses using this
rich dataset.Comment: Short version of proceedings for ICHEP08, Philadelphia PA, July 2008;
see v1 for full-length versio
A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw
We report on our findings based on the analysis of observations of the Type
II-L supernova LSQ13cuw within the framework of currently accepted physical
predictions of core-collapse supernova explosions. LSQ13cuw was discovered
within a day of explosion, hitherto unprecedented for Type II-L supernovae.
This motivated a comparative study of Type II-P and II-L supernovae with
relatively well-constrained explosion epochs and rise times to maximum
(optical) light. From our sample of twenty such events, we find evidence of a
positive correlation between the duration of the rise and the peak brightness.
On average, SNe II-L tend to have brighter peak magnitudes and longer rise
times than SNe II-P. However, this difference is clearest only at the extreme
ends of the rise time versus peak brightness relation. Using two different
analytical models, we performed a parameter study to investigate the physical
parameters that control the rise time behaviour. In general, the models
qualitatively reproduce aspects of the observed trends. We find that the
brightness of the optical peak increases for larger progenitor radii and
explosion energies, and decreases for larger masses. The dependence of the rise
time on mass and explosion energy is smaller than the dependence on the
progenitor radius. We find no evidence that the progenitors of SNe II-L have
significantly smaller radii than those of SNe II-P.Comment: 19 pages, 10 figures, accepted by A&
- …