53 research outputs found
Influenza Diagnosis with a Specific Emphasis on the M2e Antigen as a Diagnostic Tool
The therapy, observation, inclusiveness, and preclusion of related diseases all influence the diagnosis of influenza. Particularly, the pandemic duration and diagnosis time for influenza are extremely important. After the appearance of symptoms, antiviral medication must be initiated within 48 h. Cell culture, real‐time polymerase chain reaction (PCR), flow cytometry, direct and indirect immunofluorescence methods, and the quick diagnosis test are all valuable approaches for the diagnosis of influenza. Different instruments, different time durations for the results, and different specialists characterize all these approaches. Antigen selection is of critical importance with regard to the specificity and sensitivity of these methods, especially the serological and rapid diagnosis tests. M2e, the highly conserved external domain of the influenza A M2 protein, is a potential differential diagnostic marker for influenza virus infection. This chapter reviews the studies that use M2e as a diagnosis agent, and it illuminates the role and importance of M2e in the diagnosis of influenza
The Cytotoxicity, Characteristics, and Optimization of Insulin-loaded Nanoparticles
Controlled release systems for insulin are frequent subjects of research, because it is rapidly degraded by proteolytic enzymes in the gastrointestinal tract and minimally absorbed after oral administration. Controlled release systems also provide significant contribution to its stability. Different techniques are used for the preparation of drug-loaded nanoparticles, and many novel techniques are being developed. The size and morphology of insulin-loaded nanoparticles may vary according to performed techniques, even if the same polymer is used. The aim of this study was to demonstrate the cytotoxicity of insulin loaded nanoparticles and the effect of various synthesis parameters on the particle size, polydispersity index (PdI), loading efficiency, and particle morphology. In the experiments, poly(lactic-co-glycolic acid) (PLGA) and insulin-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w) method. The characterization of the nanoparticles were performed with a UV spectrometer, the Zeta-sizer system, FTIR spectroscopy, and a scanning probe microscope. Cell toxicity of different concentrations was assayed with MTT methods on L929 fibroblast cells. The optimum size of the insulin-loaded PLGA nanoparticle was obtained with a 96.5% encapsulation efficiency, a 224.5 nm average particle size, and a 0.063 polydispersity index. This study obtained and characterized spherical morphology, determined that the nanoparticles have very low toxicity, and showed the effect of different parameters on particle size and polydispersity.
DOI: http://dx.doi.org/10.17807/orbital.v9i1.934
 
Migraine-like headache in cerebral venous sinus thrombosis
A 20-year-old female, university student presented with severe, throbbing, unilateral headache, nausea and vomiting that started 2 days ago. The pain was aggravated with physical activity and she had photophobia. She had been taking contraceptive pills due to polycystic ovary for 3 months. Cranial computed tomography was uninformative and she was considered to have the first attack of migraine. She did not benefit from triptan treatment and as the duration of pain exceeded 72h further imaging was done. Cranial MRI and MR venography revealed a central filling defect and lack of flow in the left sigmoid sinus caused by venous sinus thrombosis. In search for precipitating factors besides the use of contraceptive pills, plasma protein C activity was found to be depressed (42%, normal 70–140%), homocystein was minimally elevated (12.7μmol/L, normal 0–12μmol/L) and anti-cardiolipin IgM antibody was close to the upper limit
Hydrogels in Regenerative Medicine
Polymer scaffolds have many various applications in the field of tissue engineering, drug delivery, and implantation. They are applied as dispensing devices for bioactive molecules and as three-dimensional (3D) structures that provide stimulants that organize cells and direct desired original tissue formation. Hydrogels are preferred scaffolding material because they are structurally similar to the extracellular matrix of many tissues, often processed under mild conditions, and can be delivered in a minimally invasive manner. Hydrogel materials formed a group of polymeric materials. The hydrophilic structure allows them to hold large amounts of water in their three-dimensional backbone. As a result, hydrogels are used as scaffolding material for drug and growth factor transmission, tissue engineering modifications, and many other applications. In this chapter, we describe the physical and chemical structure of hydrogels, side groups, cross-linkings, swelling properties, types of polymers and fabrication methods, and application fields
The Cytotoxicity, Characteristics, and Optimization of Insulin-loaded Nanoparticles
Controlled release systems for insulin are frequent subjects of research, because it is rapidly degraded by proteolytic enzymes in the gastrointestinal tract and minimally absorbed after oral administration. Controlled release systems also provide significant contribution to its stability. Different techniques are used for the preparation of drug-loaded nanoparticles, and many novel techniques are being developed. The size and morphology of insulin-loaded nanoparticles may vary according to performed techniques, even if the same polymer is used. The aim of this study was to demonstrate the cytotoxicity of insulin loaded nanoparticles and the effect of various synthesis parameters on the particle size, polydispersity index (PdI), loading efficiency, and particle morphology. In the experiments, poly(lactic-co-glycolic acid) (PLGA) and insulin-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w) method. The characterization of the nanoparticles were performed with a UV spectrometer, the Zeta-sizer system, FTIR spectroscopy, and a scanning probe microscope. Cell toxicity of different concentrations was assayed with MTT methods on L929 fibroblast cells. The optimum size of the insulin-loaded PLGA nanoparticle was obtained with a 96.5% encapsulation efficiency, a 224.5 nm average particle size, and a 0.063 polydispersity index. This study obtained and characterized spherical morphology, determined that the nanoparticles have very low toxicity, and showed the effect of different parameters on particle size and polydispersity.
DOI: http://dx.doi.org/10.17807/orbital.v9i1.934
Assessment of Nano-toxicity and Safety Profiles of Silver Nanoparticles
Nanotoxicology, which is related with toxic potentials of nanoparticles (NPs) and their adverse effects on living organisms and environment, is a sub-branch of toxicology discipline. Nano-toxicity of NPs depends on their doses, unique chemical, and physical properties. Nowadays, silver (Ag) NPs are used in many consumer and scientific applications such as antimicrobial and pharmaceutical applications, water purification systems, textile industry, and food packaging processes. However, the information that about their nano-toxic potentials is still not complete, and it is considered that several parameters of Ag NPs such as size, shape, surface, and stability affect the toxic potential in different ways. Nano-toxic potentials of Ag NPs were mentioned as in vivo, in vitro, and in silico the studies. In this chapter, it was evaluated the common unique properties of NPs are related with nanotoxicology such as size, surface area and modifications, shape, agglomeration status, and dose
Regular aerobic exercise increased VEGF levels in both soleus and gastrocnemius muscles correlated with hippocampal learning and VEGF levels
Physical exercise improves learning and memory abilities by increasing the levels of several growth factors in the hippocampus. One growth factor, vascular endothelial growth factor (VEGF), is primarily produced in the muscles and not only increases in the periphery during exercise but can also cross the blood-brain barrier. The aim of this study is to investigate the effects of regular aerobic chronic exercise on different types of muscle fibers and the relationships between learning/memory and muscle induced-VEGF. Following a one-week adaptation period, male rats underwent treadmill training at a speed of 8 m/min for 30 min daily, 3 days a week for 6 weeks. Memory functions were evaluated using the Morris water maze. VEGF, superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels were measured in type 1 and type 2 muscle fibers and VEGF levels were also measured in the hippocampus. Exercise positively affected both learning and memory and also increased VEGF levels in both muscle fiber types. Muscle VEGF levels positively correlate with hippocampal learning and hippocampal VEGF levels. Exercise reduced both SOD and MDA levels in type 1 and type 2 muscle fibers, whereas GPx levels decreased only in type 2 muscle fibers. Our findings suggest that regular aerobic exercise elevates VEGF levels and diminishes oxidative stress in both fiber types. Exercise-induced VEGF levels in both type 1 and 2 muscle fibers appear to be associated with the positive effect of exercise on learning and memory function and is accompanied by an increase in VEGF levels in the hippocampus. Further research is needed to elucidate the exact mechanism by which fiber type-specific VEGF mediates hippocampal neurogenesis and angiogenesis
- …