1,703 research outputs found

    Fcc breathing instability in BaBiO_3 from first principles

    Full text link
    We present first-principles density-functional calculations using the local density approximation to investigate the structural instability of cubic perovskite BaBiO_3. This material might exhibit charge disproportionation and some evidence thereof has been linked to the appearance of an additional, fourth peak in the experimental IR spectrum. However, our results suggest that the origin of this additional peak can be understood within the picture of a simple structural instability. While the true instability consists of an oxygen-octahedra breathing distortion and a small octahedra rotation, we find that the breathing alone in a fcc-type cell doubling is sufficient to explain the fourth peak in the IR spectrum. Our results show that the oscillator strength of this particular mode is of the same order of magnitude as the other three modes, in agreement with experiment.Comment: submitted to PRB, completely revised version after referee repor

    Identification and characterization of FAM124B as a novel component of a CHD7 and CHD8 containing complex

    Get PDF
    BACKGROUND: Mutations in the chromodomain helicase DNA binding protein 7 gene (CHD7) lead to CHARGE syndrome, an autosomal dominant multiple malformation disorder. Proteins involved in chromatin remodeling typically act in multiprotein complexes. We previously demonstrated that a part of human CHD7 interacts with a part of human CHD8, another chromodomain helicase DNA binding protein presumably being involved in the pathogenesis of neurodevelopmental (NDD) and autism spectrum disorders (ASD). Because identification of novel CHD7 and CHD8 interacting partners will provide further insights into the pathogenesis of CHARGE syndrome and ASD/NDD, we searched for additional associated polypeptides using the method of stable isotope labeling by amino acids in cell culture (SILAC) in combination with mass spectrometry. PRINCIPLE FINDINGS: The hitherto uncharacterized FAM124B (Family with sequence similarity 124B) was identified as a potential interaction partner of both CHD7 and CHD8. We confirmed the result by co-immunoprecipitation studies and showed a direct binding to the CHD8 part by direct yeast two hybrid experiments. Furthermore, we characterized FAM124B as a mainly nuclear localized protein with a widespread expression in embryonic and adult mouse tissues. CONCLUSION: Our results demonstrate that FAM124B is a potential interacting partner of a CHD7 and CHD8 containing complex. From the overlapping expression pattern between Chd7 and Fam124B at murine embryonic day E12.5 and the high expression of Fam124B in the developing mouse brain, we conclude that Fam124B is a novel protein possibly involved in the pathogenesis of CHARGE syndrome and neurodevelopmental disorders

    The ferroelectric transition in YMnO3_3 from first principles

    Full text link
    We have studied the structural phase transition of multiferroic YMnO3_3 from first principles. Using group-theoretical analysis and first-principles density functional calculations of the total energy and phonons, we perform a systematic study of the energy surface around the prototypic phase. We find a single instability at the zone-boundary which couples strongly to the polarization. This coupling is the mechanism that allows multiferroicity in this class of materials. Our results imply that YMnO3_3 is an improper ferroelectric. We suggest further experiments to clarify this point.Comment: published version, PRB (rapid comm), slight change in presentatio

    Considerations on radar localization in multi-target environments

    Get PDF
    In a multitude of applications like e.g. in automotive radar systems a localization of multiple passive targets in the observed area is necessary. This contribution presents a robust approach based on trilateration to detect point scatterers in a two-dimensional plane using the reflection and transmission information of only two antennas. The proposed algorithm can identify and remove ambiguities in target detection which unavoidably occur in certain target constellations in such a two-antenna configuration

    Secondary resonances of co-orbital motions

    Get PDF
    The size distribution of the stability region around the Lagrangian point L4 is investigated in the elliptic restricted three-body problem as the function of the mass parameter and the orbital eccentricity of the primaries. It is shown that there are minimum zones in the size distribution of the stability regions, and these zones are connected with secondary resonances between the frequencies of librational motions around L4. The results can be applied to hypothetical Trojan planets for predicting values of the mass parameter and the eccentricity for which such objects can be expected or their existence is less probable.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    First principles investigation of ferroelectricity in epitaxially strained Pb2_2TiO4_4

    Full text link
    The structure and polarization of the as-yet hypothetical Ruddlesden-Popper compound Pb2_2TiO4_4 are investigated within density-functional theory. Zone enter phonons of the high-symmetry K2_2NiF4_4-type reference structure, space group I4/mmmI4/mmm, were calculated. At the theoretical ground-state lattice constants, there is one unstable infrared-active phonon. This phonon freezes in to give the I2mmI2mm ferroelectric state. As a function of epitaxial strain, two additional ferroelectric phases are found, with space groups I4mmI4mm and F2mmF2mm at compressive and tensile strains, respectively.Comment: 4 pages, 4 figure

    Extreme Programming: Maestro Style

    Get PDF
    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme-programming practices. The single most influential of these factors is that continuous interaction between customers and programmers is not feasible

    The PICWidget

    Get PDF
    The Plug-in Image Component Widget (PICWidget) is a software component for building digital imaging applications. The component is part of a methodology described in GIS Methodology for Planning Planetary-Rover Operations (NPO-41812), which appears elsewhere in this issue of NASA Tech Briefs. Planetary rover missions return a large number and wide variety of image data products that vary in complexity in many ways. Supported by a powerful, flexible image-data-processing pipeline, the PICWidget can process and render many types of imagery, including (but not limited to) thumbnail, subframed, downsampled, stereoscopic, and mosaic images; images coregistred with orbital data; and synthetic red/green/blue images. The PICWidget is capable of efficiently rendering images from data representing many more pixels than are available at a computer workstation where the images are to be displayed. The PICWidget is implemented as an Eclipse plug-in using the Standard Widget Toolkit, which provides a straightforward interface for re-use of the PICWidget in any number of application programs built upon the Eclipse application framework. Because the PICWidget is tile-based and performs aggressive tile caching, it has flexibility to perform faster or slower, depending whether more or less memory is available

    Dynamic Behavior in Piezoresponse Force Microscopy

    Full text link
    Frequency dependent dynamic behavior in Piezoresponse Force Microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analyzed using a combination of modeling and experimental measurements. The PFM signal comprises contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the bending and torsion of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, the stiffness and frictional forces of tip-surface junction, and operation frequencies. The dynamic signal formation mechanism in PFM is analyzed and conditions for optimal PFM imaging are formulated. The experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented.Comment: 65 pages, 15 figures, high quality version available upon reques

    Kripke Semantics for Martin-L\"of's Extensional Type Theory

    Full text link
    It is well-known that simple type theory is complete with respect to non-standard set-valued models. Completeness for standard models only holds with respect to certain extended classes of models, e.g., the class of cartesian closed categories. Similarly, dependent type theory is complete for locally cartesian closed categories. However, it is usually difficult to establish the coherence of interpretations of dependent type theory, i.e., to show that the interpretations of equal expressions are indeed equal. Several classes of models have been used to remedy this problem. We contribute to this investigation by giving a semantics that is standard, coherent, and sufficiently general for completeness while remaining relatively easy to compute with. Our models interpret types of Martin-L\"of's extensional dependent type theory as sets indexed over posets or, equivalently, as fibrations over posets. This semantics can be seen as a generalization to dependent type theory of the interpretation of intuitionistic first-order logic in Kripke models. This yields a simple coherent model theory, with respect to which simple and dependent type theory are sound and complete
    corecore