60 research outputs found
PCRPi, Presaging Critical Residues in Protein interfaces, a new computational tool to chart hot spots in protein interfaces
Protein–protein interactions (PPIs) are ubiquitous in Biology, and thus offer an enormous potential for the discovery of novel therapeutics. Although protein interfaces are large and lack defining physiochemical traits, is well established that only a small portion of interface residues, the so-called hot spot residues, contribute the most to the binding energy of the protein complex. Moreover, recent successes in development of novel drugs aimed at disrupting PPIs rely on targeting such residues. Experimental methods for describing critical residues are lengthy and costly; therefore, there is a need for computational tools that can complement experimental efforts. Here, we describe a new computational approach to predict hot spot residues in protein interfaces. The method, called Presaging Critical Residues in Protein interfaces (PCRPi), depends on the integration of diverse metrics into a unique probabilistic measure by using Bayesian Networks. We have benchmarked our method using a large set of experimentally verified hot spot residues and on a blind prediction on the protein complex formed by HRAS protein and a single domain antibody. Under both scenarios, PCRPi delivered consistent and accurate predictions. Finally, PCRPi is able to handle cases where some of the input data is either missing or not reliable (e.g. evolutionary information)
Selection of complementary single-variable domains for building monoclonal antibodies to native proteins
Antibodies are now indispensable tools for all areas of cell biology and biotechnology as well as for diagnosis and therapy. Antigen-specific single immunoglobulin variable domains that bind to native antigens can be isolated and manipulated using yeast intracellular antibody capture technology but converting these to whole monoclonal antibody requires that complementary variable domains (VH or VL) bind to the same antigenic site. We describe a simple approach (CatcherAb) for specific isolation of such complementary single domains allowing the constitution of functional Fv, forming the basis of antigen-specific whole immunoglobulin and thus antibody production. We illustrate this approach by developing high-affinity Fv from single variable domains binding to RAS and LMO2 oncogenic proteins
Exploring the surfaceome of Ewing sarcoma identifies a new and unique therapeutic target
The cell surface proteome of tumours mediates the interface between the transformed cells and the general micro-environment including interactions with stromal cells in the tumour niche and immune cells such as T cells. In addition, the cell surface proteome of individual cancers defines biomarkers for that tumour type and potential proteins that can be the target of antibody-mediated therapy. We have used next generation deep RNA sequencing (RNA-seq) coupled to an in-house database of genes encoding cell surface proteins (herein referred to as the surfaceome) as a tool to define a cell surface proteome of Ewing sarcoma compared with progenitor mesenchymal stem cells. This subtractive RNA-seq analysis revealed a specific surfaceome of Ewing and showed unexpectedly that the leucine-rich repeat and immunoglobulin domain protein LINGO1 is expressed on over 90% of Ewing sarcoma tumours, but not expressed in any other somatic tissue apart from the brain. We found that the LINGO1 protein acts as a gateway protein internalizing into the tumour cells when engaged by antibody and can carry antibody conjugated with drugs to kill Ewing sarcoma cells. Therefore, LINGO1 is a novel, unique and specific biomarker and drug target for the treatment of Ewing sarcoma
The Ews-ERG Fusion Protein Can Initiate Neoplasia from Lineage-Committed Haematopoietic Cells
The EWS-ERG fusion protein is found in human sarcomas with the chromosomal translocation t(21;22)(q22;q12), where the translocation is considered to be an initiating event in sarcoma formation within uncommitted mesenchymal cells, probably long-lived progenitors capable of self renewal. The fusion protein may not therefore have an oncogenic capability beyond these progenitors. To assess whether EWS-ERG can be a tumour initiator in cells other than mesenchymal cells, we have analysed Ews-ERG fusion protein function in a cellular environment not typical of that found in human cancers, namely, committed lymphoid cells. We have used Ews-ERG invertor mice having an inverted ERG cDNA cassette flanked by loxP sites knocked in the Ews intron 8, crossed with mice expressing Cre recombinase under the control of the Rag1 gene to give conditional, lymphoid-specific expression of the fusion protein. Clonal T cell neoplasias arose in these mice. This conditional Ews gene fusion model of tumourigenesis shows that Ews-ERG can cause haematopoietic tumours and the precursor cells are committed cells. Thus, Ews-ERG can function in cells that do not have to be pluripotent progenitors or mesenchymal cells
Small molecule inhibitors of RAS-effector protein interactions derived using an intracellular antibody fragment
Intracellular antibodies can inhibit disease-relevant protein interactions, but inefficient cellular uptake limits their utility. Using a RAS-targeting intracellular antibody as a screening tool, the authors here identify small molecules that inhibit RAS-effector interactions and readily penetrate cells
Intrabodies based on intracellular capture frameworks that bind the RAS protein with high affinity and impair oncogenic transformation
We have applied in vivo intracellular antibody capture (IAC) technology to isolate human intrabodies which bind to the oncogenic RAS protein. IAC facilitates the capture of antibody fragments, in this case single-chain Fvs (scFvs), which tolerate reducing environments, such as the cytoplasm of cancer cells. Three anti-RAS scFvs with different affinity, solubility and intracellular binding activity were characterized. The anti-RAS scFvs with highest affinity were expressed relatively poorly in mammalian cells, and greater soluble expression was achieved by mutating the antibody framework to canonical consensus scaffolds, previously derived from IAC, without losing antigen specificity. Mutagenesis experiments showed that the consensus scaffolds are functional as intrabody fragments without an intra-domain disulfide bond. Furthermore, we could convert an intrabody which does not bind RAS in mammalian cells into a high-affinity reagent capable of inhibiting RAS-mediated NIH 3T3 transformation by exchanging VH and VL complementarity-determining regions onto its consensus scaffold. These data show that the consensus scaffold is a robust framework by which to improve intrabody function
- …