202 research outputs found

    Judaism, Happiness, and the Good Life

    Get PDF

    Cassavabase, an advantage for IITA cassava breeding program

    Get PDF

    How are compassion fatigue, burnout, and compassion satisfaction affected by quality of working life? Findings from a survey of mental health staff in Italy

    Get PDF
    BACKGROUND: Quality of working life includes elements such as autonomy, trust, ergonomics, participation, job complexity, and work-life balance. The overarching aim of this study was to investigate if and how quality of working life affects Compassion Fatigue, Burnout, and Compassion Satisfaction among mental health practitioners. METHODS: Staff working in three Italian Mental Health Departments completed the Professional Quality of Life Scale, measuring Compassion Fatigue, Burnout, and Compassion Satisfaction, and the Quality of Working Life Questionnaire. The latter was used to collect socio-demographics, occupational characteristics and 13 indicators of quality of working life. Multiple regressions controlling for other variables were undertaken to predict Compassion Fatigue, Burnout, and Compassion Satisfaction. RESULTS: Four hundred questionnaires were completed. In bivariate analyses, experiencing more ergonomic problems, perceiving risks for the future, a higher impact of work on life, and lower levels of trust and of perceived quality of meetings were associated with poorer outcomes. Multivariate analysis showed that (a) ergonomic problems and impact of work on life predicted higher levels of both Compassion Fatigue and Burnout; (b) impact of life on work was associated with Compassion Fatigue and lower levels of trust and perceiving more risks for the future with Burnout only; (c) perceived quality of meetings, need of training, and perceiving no risks for the future predicted higher levels of Compassion Satisfaction. CONCLUSIONS: In order to provide adequate mental health services, service providers need to give their employees adequate ergonomic conditions, giving special attention to time pressures. Building trustful relationships with management and within the teams is also crucial. Training and meetings are other important targets for potential improvement. Additionally, insecurity about the future should be addressed as it can affect both Burnout and Compassion Satisfaction. Finally, strategies to reduce possible work-life conflicts need to be considered

    Highly linear microstrip wideband bandpass filter with switchable notched band for wireless applications

    Get PDF
    This article presents a highly linear reconfigurable bandpass filter embedded with a switchable notch structure to get a band-notched characteristic at a specified frequency.A single PIN diode (BAP65-02) is used for the purpose of switching the notch. An optical switch, comprised of a silicon dice activated using near infrared light is also investigated as an alternative to the PIN diode. While the PIN diode or the optical switch is in the ON state this reconfigurable filter behaves as a bandpass filter with a notch at 2.4 GHz in order to reject WLAN interference while a full band response is obtained in the OFF state. The proposed filter is able to achieve good linearity using PIN diode with IIP3 of 47 dBm and there is no significant loss. A prototype is fabricated, and measured results are compared to simulations. A good agreement has been achieved between simulated and measured results

    Compact UWB bandpass filter with reconfigurable notched band

    Get PDF
    A compact bandpass filter is presented for ultra-wideband (UWB) applications with a reconfigurable notched band to reject unwanted signals from the WiMAX systems. A single pin diode is used for the purpose of switching the notch. An optical switch, comprised of a silicon dice activated using near infrared light is also investigated as an alternative to the pin diode. While the switch is in the ON state this reconfigurable filter behaves as a bandpass filter with a notch at 3.5 GHz and a full band response is obtained in the OFF state. The filter offers excellent performance for the lower-band frequency of a UWB system, ranging from 3.1 to 5.0 GHz and exhibits very low passband insertion loss. Also, transmission zeros are generated at the passband edges to enhance the signal selectivity. A filter sample has been designed and fabricated to provide experimental verification on the proposed filter. A good agreement has been achieved between simulated and measured results with both the pin diode as well as the optical switch. The proposed reconfigurable filter with notched band was able to achieve 40% size reduction as compared to an embedded open-circuited stub

    Optically reconfigurable microstrip UWB bandpass filters

    Get PDF
    This paper presents an optically reconfigurable microstrip ultra-wideband filter. A single optical switch comprised of a silicon wafer is activated using near infra-red light to select between either a bandpass or bandstop response. With the switch in the ON state, the circuit behaves as a bandpass filter while in the OFF state, the circuit behaves as a bandstop filter in the same frequency band. The proposed filter was designed, fabricated and tested. Its performance was evaluated through simulation and measurements

    solGS: a webbased tool for genomic selection

    Get PDF
    Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders. Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs. Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders. Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs. Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders. Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs. Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.Background: Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders. Results: We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs. Conclusions: solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program

    Identification of additional/novel QTL associated with resistance to cassava green mite in a biparental mapping population

    Get PDF
    Open Access JournalCassava green mite [CGM, Mononychellus tanajoa (Bondar)] is the most destructive dry-season pest in most cassava production areas. The pest is responsible for cassava fresh root yield losses of over 80%. Deployment of CGM resistant cultivars is the most cost-effective and sustainable approach of alleviating such production losses. The purposes of this study were to validate the stability of CGM resistance genes found in previously published results, to identify new genes for CGM resistance in bi-parental mapping population and estimate the heritability of the trait. A total of 109 F1 progeny derived from a cross between CGM resistant parent, TMEB778 and a very susceptible parent, TMEB419 were evaluated under CGM hotspot areas in Nigeria for two cropping seasons. A total of 42,204 SNP markers with MAF β‰₯ 0.05 were used for single-marker analysis. The most significant QTL (S12_7962234) was identified on the left arm on chromosome 12 which explained high phenotypic variance and harboured significant single nucleotide polymorphism (SNP) markers conferring resistance to CGM and leaf pubescence (LP). Colocalization of the most significant SNP associated with resistance to CGM and LP on chromosome 12 is possibly an indication of a beneficial pleiotropic effect or are physically linked. These significant SNPs markers were intersected with the gene annotations and 33 unique genes were identified within SNPs at 4 – 8MB on chromosome 12. Among these genes, nine novel candidate genes namely; Manes.12077600, Manes.12G086200, Manes.12G061200, Manes.12G083100, Manes.12G082000, Manes.12G094100, Manes.12G075600, Manes.12G091400 and Manes.12G069300 highly expressed direct link to cassava green mite resistance. Pyramiding the new QTL/genes identified on chromosome 12 in this study with previously discovered loci, such on chromosome 8, will facilitate breeding varieties that are highly resistant CGM

    Genetic characterization of cassava (Manihot esculenta Crantz) genotypes using agro-morphological and single nucleotide polymorphism markers

    Get PDF
    Open Access Article; Published online: 23 Dec 2019Dearth of information on extent of genetic variability in cassava limits the genetic improvement of cassava genotypes in Sierra Leone. The aim of this study was to assess the genetic diversity and relationships within 102 cassava genotypes using agro-morphological and single nucleotide polymorphism markers. Morphological classification based on qualitative traits categorized the germplasm into five different groups, whereas the quantitative trait set had four groups. The SNP markers classified the germplasm into three main cluster groups. A total of seven principal components (PCs) in the qualitative and four PCs in the quantitative trait sets accounted for 79.03% and 72.30% of the total genetic variation, respectively. Significant and positive correlations were observed between average yield per plant and harvest index (r = 0.76***), number of storage roots per plant and harvest index (r = 0.33*), height at first branching and harvest index (0.26*), number of storage roots per plant and average yield per plant (r = 0.58*), height at first branching and average yield per plant (r = 0.24*), length of leaf lobe and petiole length (r = 0.38*), number of leaf lobe and petiole length (r = 0.31*), width of leaf lobe and length of leaf lobe (r = 0.36*), number of leaf lobe and length of leaf lobe (r = 0.43*), starch content and dry matter content (r = 0.99***), number of leaf lobe and root dry matter (r = 0.30*), number of leaf lobe and starch content (r = 0.28*), and height at first branching and plant height (r = 0.45**). Findings are useful for conservation, management, short term recommendation for release and genetic improvement of the crop
    • …
    corecore