220 research outputs found
Cunningham v. California
In Cunningham v. California, the United States Supreme Court voted 6-3 to invalidate California\u27s determinate sentencing law ( DSL ) as violative of the Sixth and Fourteenth Amendments. The Court held that, notwithstanding the California Supreme Court\u27s determination to the contrary, the DSL conflicted with prior Supreme Court precedent by placing sentence-elevating factfinding within the judge\u27s province, thereby violat[ing] a defendant\u27s right to trial by jury safeguarded by the Sixth and Fourteenth Amendments
Fighting Terrorism in an Electronic Age: Does the Patriot Act Unduly Compromise Our Civil Liberties?
The USA PATRIOT Act is tremendously controversial, both lauded by law enforcement and decried by civil liberties groups. This iBrief considers two of the Act\u27s communications monitoring provisions, concluding that each compromises civil liberties to a greater degree than is necessary to combat terrorism. Accordingly, Congress should revise the USA PATRIOT Act, bringing it into line with the Constitution
Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
We report a quasi-differential upper limit on the extremely-high-energy (EHE)
neutrino flux above GeV based on an analysis of nine years of
IceCube data. The astrophysical neutrino flux measured by IceCube extends to
PeV energies, and it is a background flux when searching for an independent
signal flux at higher energies, such as the cosmogenic neutrino signal. We have
developed a new method to place robust limits on the EHE neutrino flux in the
presence of an astrophysical background, whose spectrum has yet to be
understood with high precision at PeV energies. A distinct event with a
deposited energy above GeV was found in the new two-year sample, in
addition to the one event previously found in the seven-year EHE neutrino
search. These two events represent a neutrino flux that is incompatible with
predictions for a cosmogenic neutrino flux and are considered to be an
astrophysical background in the current study. The obtained limit is the most
stringent to date in the energy range between and GeV. This result constrains neutrino models predicting a three-flavor
neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\
{\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}10^9\ {\rm GeV}$. A significant part
of the parameter-space for EHE neutrino production scenarios assuming a
proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review
Upper limits on the strength of periodic gravitational waves from PSR J1939+2134
The first science run of the LIGO and GEO gravitational wave detectors
presented the opportunity to test methods of searching for gravitational waves
from known pulsars. Here we present new direct upper limits on the strength of
waves from the pulsar PSR J1939+2134 using two independent analysis methods,
one in the frequency domain using frequentist statistics and one in the time
domain using Bayesian inference. Both methods show that the strain amplitude at
Earth from this pulsar is less than a few times .Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo
Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July
200
Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers
We study frequency dependent (FD) input-output schemes for signal-recycling
interferometers, the baseline design of Advanced LIGO and the current
configuration of GEO 600. Complementary to a recent proposal by Harms et al. to
use FD input squeezing and ordinary homodyne detection, we explore a scheme
which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are
sub-optimal among all possible input-output schemes, provide a global noise
suppression by the power squeeze factor, while being realizable by using
detuned Fabry-Perot cavities as input/output filters. At high frequencies, the
two schemes are shown to be equivalent, while at low frequencies our scheme
gives better performance than that of Harms et al., and is nearly fully
optimal. We then study the sensitivity improvement achievable by these schemes
in Advanced LIGO era (with 30-m filter cavities and current estimates of
filter-mirror losses and thermal noise), for neutron star binary inspirals, and
for narrowband GW sources such as low-mass X-ray binaries and known radio
pulsars. Optical losses are shown to be a major obstacle for the actual
implementation of these techniques in Advanced LIGO. On time scales of
third-generation interferometers, like EURO/LIGO-III (~2012), with
kilometer-scale filter cavities, a signal-recycling interferometer with the FD
readout scheme explored in this paper can have performances comparable to
existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi
Quantum state preparation and macroscopic entanglement in gravitational-wave detectors
Long-baseline laser-interferometer gravitational-wave detectors are operating
at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within
a broad frequency band. Such a low classical noise budget has already allowed
the creation of a controlled 2.7 kg macroscopic oscillator with an effective
eigenfrequency of 150 Hz and an occupation number of 200. This result, along
with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical
behavior of objects in the realm of everyday experience - using
gravitational-wave detectors. In this paper, we provide the mathematical
foundation for the first step of a MQM experiment: the preparation of a
macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum
state, which is possible if the interferometer's classical noise beats the SQL
in a broad frequency band. Our formalism, based on Wiener filtering, allows a
straightforward conversion from the classical noise budget of a laser
interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we
consider how Gaussian entanglement can be built among two macroscopic test
masses, and the performance of the planned Advanced LIGO interferometers in
quantum-state preparation
Search for gravitational wave bursts in LIGO's third science run
We report on a search for gravitational wave bursts in data from the three
LIGO interferometric detectors during their third science run. The search
targets subsecond bursts in the frequency range 100-1100 Hz for which no
waveform model is assumed, and has a sensitivity in terms of the
root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No
gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published
in Classical and Quantum Gravit
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis
Patients with newly diagnosed multiple myeloma (NDMM) with high-risk disease are in need of new treatment strategies to improve the outcomes. Multiple clinical, cytogenetic, or gene expression features have been used to identify high-risk patients, each of which has significant weaknesses. Inclusion of molecular features into risk stratification could resolve the current challenges. In a genome-wide analysis of the largest set of molecular and clinical data established to date from NDMM, as part of the Myeloma Genome Project, we have defined DNA drivers of aggressive clinical behavior. Whole-genome and exome data from 1273 NDMM patients identified genetic factors that contribute significantly to progression free survival (PFS) and overall survival (OS) (cumulative R2 = 18.4% and 25.2%, respectively). Integrating DNA drivers and clinical data into a Cox model using 784 patients with ISS, age, PFS, OS, and genomic data, the model has a cumlative R2 of 34.3% for PFS and 46.5% for OS. A high-risk subgroup was defined by recursive partitioning using either a) bi-allelic TP53 inactivation or b) amplification (≥4 copies) of CKS1B (1q21) on the background of International Staging System III, comprising 6.1% of the population (median PFS = 15.4 months; OS = 20.7 months) that was validated in an independent dataset. Double-Hit patients have a dire prognosis despite modern therapies and should be considered for novel therapeutic approaches
Stemming the Tide of Antibiotic Resistance (STAR): A protocol for a trial of a complex intervention addressing the 'why' and 'how' of appropriate antibiotic prescribing in general practice
BACKGROUND: After some years of a downward trend, antibiotic prescribing rates in the community have tended to level out in many countries. There is also wide variation in antibiotic prescribing between general practices, and between countries. There are still considerable further gains that could be made in reducing inappropriate antibiotic prescribing, but complex interventions are required. Studies to date have generally evaluated the effect of interventions on antibiotic prescribing in a single consultation and pragmatic evaluations that assess maintenance of new skills are rare. This paper describes the protocol for a pragmatic, randomized evaluation of a complex intervention aimed at reducing antibiotic prescribing by primary care clinicians. METHODS AND DESIGN: We developed a Social Learning Theory based, blended learning program (on-line learning, a practice based seminar, and context bound learning) called the STAR Educational Program. The 'why of change' is addressed by providing clinicians in general practice with information on antibiotic resistance in urine samples submitted by their practice and their antibiotic prescribing data, and facilitating a practice-based seminar on the implications of this data. The 'how of change' is addressed through context-bound communication skills training and information on antibiotic indication and choice. This intervention will be evaluated in a trial involving 60 general practices, with general practice as the unit of randomization (clinicians from each practice to either receive the STAR Educational Program or not) and analysis. The primary outcome will be the number of antibiotic items dispensed over one year. An economic and process evaluation will also be conducted. DISCUSSION: This trial will be the first to evaluate the effectiveness of this type of theory-based, blended learning intervention aimed at reducing antibiotic prescribing by primary care clinicians. Novel aspects include feedback of practice level data on antimicrobial resistance and prescribing, use of principles from motivational interviewing, training in enhanced communication skills that incorporates context-bound experience and reflection, and using antibiotic dispensing over one year (as opposed to antibiotic prescribing in a single consultation) as the main outcome
- …