437 research outputs found
Moisture transport by Atlantic tropical cyclones onto the North American continent
Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon
Climate change and increased risk for the insurance sector: A global perspective and an assessment for the Netherlands.
Climate change is projected to increase the frequency and severity of extreme weather events. As a consequence, economic losses caused by natural catastrophes could increase significantly. This will have considerable consequences for the insurance sector. On the one hand, increased risk from weather extremes requires assessing expected changes in damage and including adequate climate change projections in risk management. On the other hand, climate change can also bring new business opportunities for insurers. This paper gives an overview of the consequences of climate change for the insurance sector and discusses several strategies to cope with and adapt to increased risks. The particular focus is on the Dutch insurance sector, as the Netherlands is extremely vulnerable to climate change, especially with regard to extreme precipitation and flooding. Current risk sharing arrangements for weather risks are examined while potential new business opportunities, adaptation strategies, and public-private partnerships are identified. © The Author(s) 2009
Recommended from our members
Five ways to enhance the impact of climate science
Policy-making is rarely driven by evidence alone. Thus, climate scientists who adopt an ‘evidence-based’ mindset, expecting more science to lead automatically to better policy, are likely to be disappointed. Instead, embracing an ‘evidence-informed’ attitude to policy-making will be more productive, recognising that evidence must be deployed in such a way as to interact persuasively with other factors. Using the 5th Assessment Report of the IPCC as inspiration, this commentary argues that climate scientists would do well to consider five ideas and ultimately embrace an evidence-informed approach to presenting evidence.This work is taken from a larger PhD project currently
being undertaken in the Department of Geography at
the University of Cambridge. This work is very kindly
funded by the Economic and Social Research Council
(grant number ES/I901957/1) and by the Homerton
College Charter Scholarship scheme. I would like to thank
S. E. Owens, A. Donovan and W. M. Adams for comments,
and D. Watson for help with the figures.This is the accepted manuscript. The final version is available in Nature Climate Change 4, 522–524 (2014) doi:10.1038/nclimate2270 . http://www.nature.com/nclimate/journal/v4/n7/full/nclimate2270.htm
Operational forecasting of daily summer maximum and minimum temperatures in the Valencia Region
Extreme-temperature events have a great impact on human society. Thus, knowledge of summer temperatures can be very useful both for the general public and for organizations whose workers operate in the open. An accurate forecasting of summer maximum and minimum temperatures could help to predict heatwave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The objective of this work is to evaluate the skill of the regional atmospheric and modelling system (RAMS) model in determining daily summer maximum and minimum temperatures in the Valencia Region. For this, we have used the real-time configuration of this model currently running at the Centro de Estudios Ambientales de Mediterráneo Foundation. This operational system is run twice a day, and both runs have a 3-day forecast range. To carry out the verification of the model in this work, the information generated by the system has been broken into individual simulation days for a specific daily run of the model. Moreover, we have analysed the summer forecast period from 1 June to 31 August for 2007, 2008, 2009 and 2010. The results indicate good agreement between observed and simulated maximum temperatures, with RMSE in general near 2 °C both for coastal and inland stations. For this parameter, the model shows a negative bias around −1.5 °C in the coast, while the opposite trend is observed inland. In addition, RAMS also shows good results in forecasting minimum temperatures for coastal locations, with bias lower than 1 °C and RMSE below 2 °C. However, the model presents some difficulties for this parameter inland, where bias higher than 3 °C and RMSE of about 4 °C have been found. Besides, there is little difference in both temperatures forecasted within the two daily RAMS cycles and that RAMS is very stable in maintaining the forecast performance at least for three forecast days
Science-Policy Interactions in MPA Site Selection in the Dutch Part of the North Sea
At the 7th conference of the parties to the Convention on Biological Diversity (CBD-COP7, Kuala Lumpur, 2004) it was agreed to establish a global network of marine and coastal protected areas by 2012. The defined objectives of this MPA-network are based on the ecosystem approach: to protect biodiversity and other ecological values, and to ensure sustainable use. The (inter)national policy guidelines state that the selection of MPAs should be based on scientific information and ecological criteria only. As a signatory to the Convention, the Netherlands is now faced with meeting this obligation, and the process of designating the first Marine Protected Areas (MPAs) in the Dutch part of the North Sea is currently in progress. We focus on the science–policy interactions that are part of this Dutch MPA selection process. By taking a closer look at the contemporary site selection process as well as its historical background, we show that ecological, socio-economic and political considerations cannot always be easily separated. Uncertainty is high and the ultimate selection and delimitation of candidate sites rather seems to be the result of a balancing act between ecological, socio-economic and political interests, in which scientific and policy guiding procedures blend with ad-hoc political decision making, and with expert judgment in cases where data is lacking. As such, this paper presents an example of present-day environmental policy making in action
Materialising links between air pollution and health: How societal impact was achieved in an interdisciplinary project
Societal impact is an increasingly important imperative of academic funding. However, there is little research to date documenting how impact is accomplished in practice. Drawing on insights from Actor-Network Theory, we explore the research-policy interface within an interdisciplinary research project on the relationships between air pollution and human health. Health policy impact was important to the researchers for moral as well as pragmatic reasons but it was a goal that was seen as potentially in tension with that of doing science. In fields such as air pollution and health, networks of policymakers and researchers are inevitably entangled, and we found that processes of engagement operated to delineate science from policy. Health was initially black-boxed and under-explicated, used as a signifier in itself for societal impact. By mobilising networks of policy actors, brought together in workshops to rank the importance of policy scenarios for the research team, the connections between air pollution and health were materialised and made actionable. This was achieved by framing existing data sets, emission technologies, policy expertise, pollutant species and human health in particular ways and, in doing so, excluding others. The process of linking air pollution and health research to achieve societal impact not only influenced how these phenomena were known but, critically, enabled and constrained potential policy responses. Tracing these research arrangements made the material discursive processes of 'impact' visible and analysable as objects of social science scholarship, and therefore generated a productive site for critically engaging with processes of environment and health science and policy
Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean
This study considers and compares several of the most important factors contributing to coastal flooding in Latin American and the Caribbean (LAC) while accounting for the variations of these factors with location and time. The study assesses the populations, the land areas and the built capital exposed at present and at the middle and end of the 21st century for a set of scenarios that include both climatic and non-climatic drivers. Climatic drivers include global mean sea level, natural modes of climate variability such as El Niño, natural subsidence, and extreme sea levels resulting from the combination of projected local sea-level rise, storm surges and wave setup. Population is the only human-related driver accounted for in the future. Without adaptation, more than 4 million inhabitants will be exposed to flooding from relative sea-level rise by the end of the century, assuming the 8.5 W m−2 trajectory of the Representative Concentration Pathways (RCPs), or RCP8.5. However, the contributions from El Niño events substantially raise the threat in several Pacific-coast countries of the region and sooner than previously anticipated. At the tropical Pacific coastlines, the exposure by the mid-century for an event similar to El Niño 1998 would be comparable to that of the RCP4.5 relative sea-level rise by the end of the century. Furthermore, more than 7.5 million inhabitants, 42,600 km2 and built capital valued at 334 billion USD are currently situated at elevations below the 100-year extreme sea level. With sea levels rising and the population increasing, it is estimated that more than 9 million inhabitants will be exposed by the end of the century for either of the RCPs considered. The spatial distribution of exposure and the comparison of scenarios and timeframes can serve as a guide in future adaptation and risk reduction policies in the region
- …