13 research outputs found

    First-Borns Carry a Higher Metabolic Risk in Early Adulthood: Evidence from a Prospective Cohort Study

    Get PDF
    Birth order has been associated with early growth variability and subsequent increased adiposity, but the consequent effects of increased fat mass on metabolic risk during adulthood have not been assessed. We aimed to quantify the metabolic risk in young adulthood of being first-born relative to those born second or subsequently.Body composition and metabolic risk were assessed in 2,249 men, aged 17-19 years, from a birth cohort in southern Brazil. Metabolic risk was assessed using a composite z-score integrating standardized measurements of blood pressure, total cholesterol, high density lipoprotein, triglycerides and fat mass. First-borns had lower birth weight z-score (Δ = -0.25, 95%CI -0.35, -0.15,p<0.001) but showed greater weight gain during infancy (change in weight z-score from birth to 20 months: Δ = 0.39, 95%CI 0.28-0.50, p<0.0001) and had greater mean height (Δ = 1.2 cm, 95%CI: 0.7-1.6, p<0.0001) and weight (Δ = 0.34 kg, 95%CI: 0.13-0.55, p<0.002) at 43 months. This greater weight and height tracked into early adulthood, with first-borns being significantly taller, heavier and with significantly higher fat mass than later-borns. The metabolic risk z-score was significantly higher in first-borns.First-born status is associated with significantly elevated adiposity and metabolic risk in young adult men in Brazil. Our results, linking cardiovascular risk with life history variables, suggest that metabolic risk may be associated with the worldwide trend to smaller family size and it may interact with changes in behavioural or environmental risk factors

    Size-Selected Ag Nanoparticles with Five-Fold Symmetry

    Get PDF
    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications

    Neural Transplantation in Spinal Cord under Different Conditions of Lesions and Their Functional Significance

    No full text

    Fet Technologies and Applications

    No full text

    Electrical and Optical Properties of MIS Devices

    No full text
    corecore