82 research outputs found

    Preliminary Limits on the WIMP-Nucleon Cross Section from the Cryogenic Dark Matter Search (CDMS)

    Get PDF
    We are conducting an experiment to search for WIMPs, or weakly-interacting massive particles, in the galactic halo using terrestrial detectors. This generic class of hypothetical particles, whose properties are similar to those predicted by extensions of the standard model of particle physics, could comprise the cold component of non-baryonic dark matter. We describe our experiment, which is based on cooled germanium and silicon detectors in a shielded low-background cryostat. The detectors achieve a high degree of background rejection through the simultaneous measurement of the energy in phonons and ionization. Using exposures on the order of one kilogram-day from initial runs of our experiment, we have achieved (preliminary) upper limits on the WIMP-nucleon cross section that are comparable to much longer runs of other experiments.Comment: 5 LaTex pages, 5 eps figs, epsf.sty, espcrc2dsa2.sty. Proceedings of TAUP97, Gran Sasso, Italy, 7-11 Sep 1997, Nucl. Phys. Suppl., A. Bottino, A. di Credico and P. Monacelli (eds.). See also http://cfpa.berkeley.ed

    Hot and Cold Dark Matter Search with GENIUS

    Get PDF
    GENIUS is a proposal for a large volume detector to search for rare events. An array of 40-400 'naked' HPGe detectors will be operated in a tank filled with ultra-pure liquid nitrogen. After a description of performed technical studies of detector operation in liquid nitrogen and of Monte Carlo simulations of expected background components, the potential of GENIUS for detecting WIMP dark matter, the neutrinoless double beta decay in 76-Ge and low-energy solar neutrinos is discussed

    Hot and Cold Dark Matter Search with GENIUS

    Get PDF
    GENIUS is a proposal for a large volume detector to search for rare events. An array of 40-400 'naked' HPGe detectors will be operated in a tank filled with ultra-pure liquid nitrogen. After a description of performed technical studies of detector operation in liquid nitrogen and of Monte Carlo simulations of expected background components, the potential of GENIUS for detecting WIMP dark matter, the neutrinoless double beta decay in 76-Ge and low-energy solar neutrinos is discussed.Comment: 11 pages, latex, 3 eps figures, requires svmult.cls. To appear in: Proceedings of "Sources and detection of dark matter in the Universe", Marina del Rey, CA, February 23-25, 2000, Springer 2000, edited by D. Clin

    German ambulatory care physicians' perspectives on clinical guidelines – a national survey

    Get PDF
    BACKGROUND: There has been little systematic research about the extent to which German physicians accept or reject the concept and practice of a) clinical practice guidelines (CPG) and b) evidence based medicine (EBM) The aim of this study was to investigate German office-based physicians' perspective on CPGs and EBM and their application in medical practice. METHODS: Structured national telephone survey of ambulatory care physicians, four thematic blocks with 21 questions (5 point Likert scale). 511 office-based general practitioners and specialists. Main outcome measures were the application of Clinical Practice Guidelines in daily practice, preference for sources of guidelines and degree of knowledge and acceptance of EBM. In the data analysis Pearson's correlation coefficient was used for explorative analysis of correlations. The comparison of groups was performed by Student's t-test. Chi(2 )test was used to investigate distribution of two or more categorical variables. RESULTS: Of the total study population 55.3% of physicians reported already using guidelines in the treatment of patients. Physicians in group practices (GrP) as well as general practitioners (GP) agreed significantly more with the usefulness of guidelines as a basis for patient care than doctors in single practices (SP) or specialists (S) (Student's t-test mean GP 2.57, S 2.84, p < 0.01; mean GrP 2.55, SP 2.80, p < 0.05). 33.1% of the participants demonstrated a strong rejection to the application of guidelines in patient care. Acceptance of guidelines from a governmental institution was substantially lower than from physician networks or medical societies (36.2% vs. 53.4% vs. 62.0%). 73.8% of doctors interpret EBM as a combination of scientific research and individual medical knowledge; 80% regard EBM as the best basis for patient care. CONCLUSION: Despite a majority of physicians accepting and applying CPGs a large group remains that is critical and opposed to the utilization of CPGs in daily practice and to the concept of EBM in general. Doctors in single practice and specialists appear to be more critical than physicians in group practices and GPs. Future research is needed to evaluate the willingness to acquire necessary knowledge and skills for the promotion and routine application of CPGs

    Characterization of Voltage-Gated Ca2+ Conductances in Layer 5 Neocortical Pyramidal Neurons from Rats

    Get PDF
    Neuronal voltage-gated Ca2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic calcium changes. One important function of voltage-gated Ca2+ channels is generating regenerative dendritic Ca2+ spikes. However, the Ca2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca2+ channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-clamp technique. The activation kinetics of the total Ba2+ current revealed conductance activation only at medium and high voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments identified 5 voltage-gated Ca2+ channel sub-types – L-, N-, R- and P/Q-type. Finally, the activation of the Ca2+ conductances was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-propagating action potential (mBPAP) protocol. These experiments enable us to suggest the possible contribution of the five Ca2+ channel sub-types to Ca2+ current flow during activation under physiological conditions

    Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double beta decays of Xe-134

    Get PDF

    Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils

    Get PDF
    LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼ 7 -tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for p p -chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the < 100     keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout

    Simulations of Events for the LUX-ZEPLIN (LZ) Dark Matter Experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1-2) ×\times 10−1210^{-12} pb at a WIMP mass of 40 GeV/c2c^2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    The LUX-ZEPLIN (LZ) Experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    Get PDF
    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238^{238}Ue_{e}~<<1.6~mBq/kg, 238^{238}Ul_{l}~<<0.09~mBq/kg, 232^{232}The_{e}~=0.28±0.03=0.28\pm 0.03~mBq/kg, 232^{232}Thl_{l}~=0.25±0.02=0.25\pm 0.02~mBq/kg, 40^{40}K~<<0.54~mBq/kg, and 60^{60}Co~<<0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160±0.0010.160\pm0.001(stat)±0.030\pm0.030(sys) counts
    • …
    corecore