86 research outputs found
Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.
We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease
Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice
10.1038/srep03754Scientific Reports4
Hypometabolism as a therapeutic target in Alzheimer's disease
The pathology of Alzheimer's disease (AD) is characterized by cerebral atrophy in frontal, temporal, and parietal regions, with senile plaques, dystrophic neurites, and neurofibrillar tangles within defined areas of the brain. Another characteristic of AD is regional hypometabolism in the brain. This decline in cerebral glucose metabolism occurs before pathology and symptoms manifest, continues as symptoms progress, and is more severe than that of normal aging. Ketone bodies are an efficient alternative fuel for cells that are unable to metabolize glucose or are 'starved' of glucose. AC-1202 is designed to elevate serum ketone levels safely. We previously showed that treatment with AC-1202 in patients with mild-to-moderate AD improves memory and cognition. Treatment outcomes were influenced by apolipoprotein E genotype status. These data suggest that AC-1202 may be an effective treatment for cognitive dysfunction by providing an alternative substrate for use by glucose-compromised neurons
Meta-Analysis for Genome-Wide Association Study Identifies Multiple Variants at the BIN1 Locus Associated with Late-Onset Alzheimer's Disease
Recent GWAS studies focused on uncovering novel genetic loci related to AD have revealed associations with variants near CLU, CR1, PICALM and BIN1. In this study, we conducted a genome-wide association study in an independent set of 1034 cases and 1186 controls using the Illumina genotyping platforms. By coupling our data with available GWAS datasets from the ADNI and GenADA, we replicated the original associations in both PICALM (rs3851179) and CR1 (rs3818361). The PICALM variant seems to be non-significant after we adjusted for APOE e4 status. We further tested our top markers in 751 independent cases and 751 matched controls. Besides the markers close to the APOE locus, a marker (rs12989701) upstream of BIN1 locus was replicated and the combined analysis reached genome-wide significance level (p = 5E-08). We combined our data with the published Harold et al. study and meta-analysis with all available 6521 cases and 10360 controls at the BIN1 locus revealed two significant variants (rs12989701, p = 1.32E-10 and rs744373, p = 3.16E-10) in limited linkage disequilibrium (r2 = 0.05) with each other. The independent contribution of both SNPs was supported by haplotype conditional analysis. We also conducted multivariate analysis in canonical pathways and identified a consistent signal in the downstream pathways targeted by Gleevec (P = 0.004 in Pfizer; P = 0.028 in ADNI and P = 0.04 in GenADA). We further tested variants in CLU, PICALM, BIN1 and CR1 for association with disease progression in 597 AD patients where longitudinal cognitive measures are sufficient. Both the PICALM and CLU variants showed nominal significant association with cognitive decline as measured by change in Clinical Dementia Rating-sum of boxes (CDR-SB) score from the baseline but did not pass multiple-test correction. Future experiments will help us better understand potential roles of these genetic loci in AD pathology
Learning genetic epistasis using Bayesian network scoring criteria
<p>Abstract</p> <p>Background</p> <p>Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is <it>Multifactor Dimensionality Reduction </it>(MDR). Jiang et al. created a combinatorial epistasis learning method called <it>BNMBL </it>to learn Bayesian network (BN) epistatic models. They compared BNMBL to MDR using simulated data sets. Each of these data sets was generated from a model that associates two SNPs with a disease and includes 18 unrelated SNPs. For each data set, BNMBL and MDR were used to score all 2-SNP models, and BNMBL learned significantly more correct models. In real data sets, we ordinarily do not know the number of SNPs that influence phenotype. BNMBL may not perform as well if we also scored models containing more than two SNPs. Furthermore, a number of other BN scoring criteria have been developed. They may detect epistatic interactions even better than BNMBL.</p> <p>Although BNs are a promising tool for learning epistatic relationships from data, we cannot confidently use them in this domain until we determine which scoring criteria work best or even well when we try learning the correct model without knowledge of the number of SNPs in that model.</p> <p>Results</p> <p>We evaluated the performance of 22 BN scoring criteria using 28,000 simulated data sets and a real Alzheimer's GWAS data set. Our results were surprising in that the Bayesian scoring criterion with large values of a hyperparameter called α performed best. This score performed better than other BN scoring criteria and MDR at <it>recall </it>using simulated data sets, at detecting the hardest-to-detect models using simulated data sets, and at substantiating previous results using the real Alzheimer's data set.</p> <p>Conclusions</p> <p>We conclude that representing epistatic interactions using BN models and scoring them using a BN scoring criterion holds promise for identifying epistatic genetic variants in data. In particular, the Bayesian scoring criterion with large values of a hyperparameter α appears more promising than a number of alternatives.</p
Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-Time PCR
BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria
Hippocampal volumes are important predictors for memory function in elderly women
<p>Abstract</p> <p>Background</p> <p>Normal aging involves a decline in cognitive function that has been shown to correlate with volumetric change in the hippocampus, and with genetic variability in the APOE-gene. In the present study we utilize 3D MR imaging, genetic analysis and assessment of verbal memory function to investigate relationships between these factors in a sample of 170 healthy volunteers (age range 46–77 years).</p> <p>Methods</p> <p>Brain morphometric analysis was performed with the automated segmentation work-flow implemented in FreeSurfer. Genetic analysis of the APOE genotype was determined with polymerase chain reaction (PCR) on DNA from whole-blood. All individuals were subjected to extensive neuropsychological testing, including the California Verbal Learning Test-II (CVLT). To obtain robust and easily interpretable relationships between explanatory variables and verbal memory function we applied the recent method of conditional inference trees in addition to scatterplot matrices and simple pairwise linear least-squares regression analysis.</p> <p>Results</p> <p>APOE genotype had no significant impact on the CVLT results (scores on long delay free recall, CVLT-LD) or the ICV-normalized hippocampal volumes. Hippocampal volumes were found to decrease with age and a right-larger-than-left hippocampal asymmetry was also found. These findings are in accordance with previous studies. CVLT-LD score was shown to correlate with hippocampal volume. Multivariate conditional inference analysis showed that gender and left hippocampal volume largely dominated predictive values for CVLT-LD scores in our sample. Left hippocampal volume dominated predictive values for females but not for males. APOE genotype did not alter the model significantly, and age was only partly influencing the results.</p> <p>Conclusion</p> <p>Gender and left hippocampal volumes are main predictors for verbal memory function in normal aging. APOE genotype did not affect the results in any part of our analysis.</p
Alzheimer’s disease: diagnostics, prognostics and the road to prevention
Alzheimer’s disease (AD) presents one of the leading healthcare challenges of the 21st century, with a projected worldwide prevalence of >107 million cases by 2025. While biomarkers have been identified, which may correlate with disease progression or subtype for the purpose of disease monitoring or differential diagnosis, a biomarker for reliable prediction of late onset disease risk has not been available until now. This deficiency in reliable predictive biomarkers, coupled with the devastating nature of the disease, places AD at a high priority for focus by predictive, preventive and personalized medicine. Recent data, discovered using phylogenetic analysis, suggest that a variable length poly-T sequence polymorphism in the TOMM40 gene, adjacent to the APOE gene, is predictive of risk of AD age-of-onset when coupled with a subject’s current age. This finding offers hope for reliable assignment of disease risk within a 5-7 year window, and is expected to guide enrichment of clinical trials in order to speed development of preventative medicines
Increased CSF tau level is correlated with decreased lamina cribrosa thickness
BACKGROUND: This study was to investigate whether the previously proposed link between Alzheimer’s disease (AD) and decreased retinal nerve fiber layer thickness could be explained by the relationship between abnormal CSF profiles and optic nerve head characteristics, focusing on the influence of CSF tau protein on the lamina cribrosa (LC) thickness (LCT). METHODS: A total of 44 eyes from 18 patients with AD and 26 healthy subjects were subjected to enhanced-depth-imaging volume scanning of the optic nerve using spectral-domain optical coherence tomography. The B-scan images were constructed three-dimensionally using maximum intensity projection (MIP), and the LCT was measured at three locations (superior midperipheral, midhorizontal, and inferior midperipheral) using the thin-slab MIP images. CSF levels of amyloid β 1-42 peptide, (Aβ(1–42)), total tau (T-tau) and tau phosphorylated at threonine 181 (P-tau(181P)) were measured from CSF samples of each subject. The relationship between the level of CSF proteins and the LCT was determined using linear regression and fractional polynomial analyses. RESULTS: Univariate regression analysis revealed that higher CSF levels of T-tau (P = 0.004) and P-tau(181P) (P = 0.027), as well as a smaller central corneal thickness (P = 0.032), were significantly associated with a smaller LCT. Multivariate analysis indicated that only CSF T-tau (P = 0.041) was significantly associated with the LCT. The relationship was well explained by both linear regression (R(2) = 0.179, P = 0.004) and fractional polynomial analysis (R(2) = 0.275, P = 0.001). When we performed an assessment by linear regression with an indicator, the relationship was significant both in the healthy and AD groups, with a stronger correlation found in the healthy group (regression coefficients = -1.098 vs. -0.280, P = 0.018). CONCLUSIONS: An increased CSF level of T-tau was significantly associated with a thinner LCT in both the healthy and AD groups. This result suggests that LCT could serve as a potential non-invasive indicator for increased CSF tau. The clinical meaning of the higher level of CSF T-tau in axonal degeneration of the optic nerve remains to be determined
- …
