28 research outputs found

    Muscle and reflex changes with varying joint angle in hemiparetic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite intensive investigation, the origins of the neuromuscular abnormalities associated with spasticity are not well understood. In particular, the mechanical properties induced by stretch reflex activity have been especially difficult to study because of a lack of accurate tools separating reflex torque from torque generated by musculo-tendinous structures. The present study addresses this deficit by characterizing the contribution of neural and muscular components to the abnormally high stiffness of the spastic joint.</p> <p>Methods</p> <p>Using system identification techniques, we characterized the neuromuscular abnormalities associated with spasticity of ankle muscles in chronic hemiparetic stroke survivors. In particular, we systematically tracked changes in muscle mechanical properties and in stretch reflex activity during changes in ankle joint angle. Modulation of mechanical properties was assessed by applying perturbations at different initial angles, over the entire range of motion (ROM). Experiments were performed on both paretic and non-paretic sides of stroke survivors, and in healthy controls.</p> <p>Results</p> <p>Both reflex and intrinsic muscle stiffnesses were significantly greater in the spastic/paretic ankle than on the non-paretic side, and these changes were strongly position dependent. The major reflex contributions were observed over the central portion of the angular range, while the intrinsic contributions were most pronounced with the ankle in the dorsiflexed position.</p> <p>Conclusion</p> <p>In spastic ankle muscles, the abnormalities in intrinsic and reflex components of joint torque varied systematically with changing position over the full angular range of motion, indicating that clinical perceptions of increased tone may have quite different origins depending upon the angle where the tests are initiated.</p> <p>Furthermore, reflex stiffness was considerably larger in the non-paretic limb of stroke patients than in healthy control subjects, suggesting that the non-paretic limb may not be a suitable control for studying neuromuscular properties of the ankle joint.</p> <p>Our findings will help elucidate the origins of the neuromuscular abnormalities associated with stroke-induced spasticity.</p

    The treatment of spasticity with Delta9-tetrahydrocannabinol in persons with spinal cord injury

    No full text
    STUDY DESIGN: Open label study to determine drug dose for a randomized double-blind placebo-controlled parallel study. OBJECTIVES: To assess the efficacy and side effects of oral Delta(9)-tetrahydrocannabinol (THC) and rectal THC-hemisuccinate (THC-HS) in SCI patients. SETTING: REHAB Basel, Switzerland. METHOD: Twenty-five patients with SCI were included in this three-phase study with individual dose adjustment, each consisting of 6 weeks. Twenty-two participants received oral THC open label starting with a single dose of 10 mg (Phase 1, completed by 15 patients). Eight subjects received rectal THC-HS (Phase 2, completed by seven patients). In Phase 3, six patients were treated with oral THC and seven with placebo. Major outcome parameters were the spasticity sum score (SSS) using the Modified Ashworth Scale (MAS) and self-ratings of spasticity. RESULTS: Mean daily doses were 31 mg with THC and 43 mg with THC-HS. Mean SSS for THC decreased significantly from 16.72 (+/-7.60) at baseline to 8.92 (+/-7.14) on day 43. Similar improvement was seen with THC-HS. We observed a significant improvement of SSS with active drug (P=0.001) in the seven subjects who received oral THC in Phase 1 and placebo in Phase 3. Major reasons for drop out were increase of pain and psychological side effects. CONCLUSION: THC is an effective and safe drug in the treatment of spasticity. At least 15-20 mg per day were needed to achieve a therapeutic effect
    corecore