23 research outputs found

    Heart rate variability (HRV) and muscular system activity (EMG) in cases of crash threat during simulated driving of a passenger car

    Full text link
    Objectives: The aim of the study was to verify whether simultaneous responses from the muscular and circulatory system occur in the driver's body under simulated conditions of a crash threat. Materials and Methods: The study was carried out in a passenger car driving simulator. The crash was included in the driving test scenario developed in an urban setting. In the group of 22 young male subjects, two physiological signals - ECG and EMG were continuously recorded. The length of the RR interval in the ECG signal was assessed. A HRV analysis was performed in the time and frequency domains for 1-minute record segments at rest (seated position), during undisturbed driving as well as during and several minutes after the crash. For the left and right side muscles: m. trapezius (TR) and m. flexor digitorum superficialis (FDS), the EMG signal amplitude was determined. The percentage of maximal voluntary contraction (MVC) was compared during driving and during the crash. Results: As for the ECG signal, it was found that in most of the drivers changes occurred in the parameter values reflecting HRV in the time domain. Significant changes were noted in the mean length of RR intervals (mRR). As for the EMG signal, the changes in the amplitude concerned the signal recorded from the FDS muscle. The changes in ECG and EMG were simultaneous in half of the cases. Conclusion: Such parameters as mRR (ECG signal) and FDS-L amplitude (EMG signal) were the responses to accident risk. Under simulated conditions, responses from the circulatory and musculoskeletal systems are not always simultaneous. The results indicate that a more complete driver's response to a crash in road traffic is obtained based on parallel recording of two physiological signals (ECG and EMG)

    The emotional movie database (EMDB): a self-report and psychophysiological study

    Get PDF
    Film clips are an important tool for evoking emotional responses in the laboratory. When compared with other emotionally potent visual stimuli (e.g., pictures), film clips seem to be more effective in eliciting emotions for longer periods of time at both the subjective and physiological levels. The main objective of the present study was to develop a new database of affective film clips without auditory content, based on a dimensional approach to emotional stimuli (valence, arousal and dominance). The study had three different phases: (1) the pre-selection and editing of 52 film clips (2) the self-report rating of these film clips by a sample of 113 participants and (3) psychophysiological assessment [skin conductance level (SCL) and the heart rate (HR)] on 32 volunteers. Film clips from different categories were selected to elicit emotional states from different quadrants of affective space. The results also showed that sustained exposure to the affective film clips resulted in a pattern of a SCL increase and HR deceleration in high arousal conditions (i.e., horror and erotic conditions). The resulting emotional movie database can reliably be used in research requiring the presentation of non-auditory film clips with different ratings of valence, arousal and dominance.Portuguese Foundation for Science and Technology with individual grants (SFRH/BD/41484/2007 and SFRH/BD/64355/2009

    Comparative Study of Laptops and Touch-Screen PCs for Searching on the Web

    No full text
    This study compares the use of a laptop versus a touch-screen PC to perform web-based information search tasks. Thirty-six participants took part in a lab-based experiment. They were asked to use either a laptop or a touch-screen PC to seek information on the web and retrieve relevant pieces of information while their sessions were recorded. Cognitive load was measured through eyerelated data and cortical activity (EEG) along with a self-reported scale. Main results indicated that participants who used the laptop outperformed those who used the touch-screen PC, with more relevant webpages bookmarked (F = 9.678, p = .004) and more relevant elements retrieved (F = 6.302, p = .018). Participants with the touch-screen PC also spent more time on each webpage than their counterparts (F = 9.2141, p = .005). These results suggest that using the touch-screen PC required more mental effort, which is supported by cognitive load measurements. Linear mixed-model analyses showed significant differences across devices in both pupil size variation (F = 3.692, p = .05) and EEG-based cognitive load index (F = 5.181, p = .028). This study raises issues about whether touchscreen computers are suited for every computing needs.SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    corecore