12 research outputs found

    Students’ Views on Difficulties in Learning Histology

    No full text
    The aim of this study was to provide a better understanding of the main difficulties hindering undergraduate biology students in learning histology. The study utilized a self‐administered questionnaire which included three closed‐ended and two open‐ended questions: (1) if students had difficulty in learning about each tissue type; (2) what might be the problem in learning about the tissue at hand; (3) which topics were the most difficult; (4) what were the possible reasons that made image identification of tissue types difficult; and (5) how to improve the course curriculum from a student perspective. The survey was administered to 139 undergraduate biology students enrolled in a histology course, of which 101 surveys were completed and analyzed both qualitatively and quantitatively. The topics that students experienced the most difficulties with were: nervous tissue, plant tissues, bone tissues, and glandular epithelial tissue. The main reasons students experienced difficulties with these tissue types, according to the students themselves, were the nature of the topic, grasping the terminology used, and insufficient teaching time. Students suggested the adoption of strategies such as: teaching based on practical tasks; reducing the content of the histology curriculum; adding anatomy subjects; and making histology education more interesting.This research was supported by the Teaching Program Networks from the Institute of Education Sciences at University of Alicante; Analysis of the difficulties in the learning of Histology Network (4146)

    Comparative analysis of phenolic profiles of ovipositional fluid of Rhinusa pilosa (Mecinini, Curculionidae) and its host plant Linaria vulgaris (Plantaginaceae)

    No full text
    Rhinusa pilosa (Gyllenhal) is a highly specific weevil that induces stem galls on the common toadflax Linaria vulgaris Mill. females oviposit the eggs near the apex of a growing shoot. The act of oviposition is accompanied by secretion of an ovipositional fluid, which is considered to be cecidogen, directly involved in gall induction. The remains of cecidogenic fluid were collected from the surface of the oviposition point on the stem. We performed a comparative analysis of the phenolics extracted from cecidogen, the stem and galls of L. vulgaris and adult and larva of R. pilosa by HPLC-DAD. One compound with A (max) at 273, 332 nm (R (t) 30.65 min) was exclusively found in the methanol extract of cecidogen. To further characterize the cecidogen and stem phenolic profiles, we used UHPLC coupled with an OrbiTrap mass analyzer. Among 49 phenolic compounds extracted from both the ovipositional fluid and the plant, protocatechuic acid and two phenolic glycosides were exclusively found in cecidogen: diosmetin-O-acetylrutinoside and an unidentified compound. The unknown compound produced an MS2 base peak at 387 and 327 and 267 m/z base peaks at MS3 and MS4 fragmentation, respectively, and had the molecular formula C32H31O18. The plausible role of phenolic compounds in the induction of gall formation on L. vulgaris is discussed
    corecore