15 research outputs found
Translation invariant extensions of finite volume measures
We investigate the following questions: Given a measure μΛ on configurations on a subset Λ of a lattice L, where a configuration is an element of ΩΛ for some fixed set Ω, does there exist a measure μ on configurations on all of L, invariant under some specified symme- try group of L, such that μΛ is its marginal on configurations on Λ? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which L = Zd and the symmetries are the translations. For the case in which Λ is an interval in Z we give a simple necessary and sufficient condition, local translation invariance (LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which L is the Bethe lattice. On Z we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When Λ ⊂ Z is not an interval, or when Λ ⊂ Zd with d > 1, the LTI condition is necessary but not sufficient for extendibility. For Zd with d > 1, extendibility is in some sense undecidable