4 research outputs found

    Risk stratification using FLT3 and NPM1 in acute myeloid leukemia patients autografted in first complete remission

    No full text
    FLT3-ITD and NPM1 mutation refine prognostic stratification in acute myeloid leukemia (AML) with intermediate-risk cytogenetics. However, data on their role in patients undergoing autologous stem cell transplantation (Auto-SCT) as post-remission therapy (PRT) are limited. We therefore sought to retrospectively evaluate the role of FLT3-ITD and NPM1 in a cohort of AML patients (n = 405) with intermediate-risk cytogenetics, autografted in first complete remission (CR1). Patients were transplanted between 2000 and 2014 and reported to the European Society for Blood and Marrow Transplantation (EBMT) registry. Leukemia-free survival (LFS) was the primary outcome. Median follow-up was 5.5 years. FLT3-ITDneg/NPM1WT was the leading molecular subtype (50%), followed by FLT3-ITDneg/NPM1mut (30%). In the univariate analysis, molecular subtype was associated with LFS, overall survival (OS), and relapse incidence (RI) (p < 0.001); 5-year LFS: FLT3-ITDneg/NPM1mut 62%, FLT3-ITDpos/NPM1mut 38%, FLT3-ITDneg/NPM1WT 32%, and FLT3-ITDpos/NPM1WT 21%. At 5 years, OS and RI in the FLT3-ITDneg/NPM1mut subtype were 74% and 35%, respectively. The corresponding OS and RI in other subtypes were below 48% and over 57%. In a Cox multivariable model, molecular subtype was the strongest predictor of LFS, OS, and relapse. In conclusion, AML patients with intermediate-risk cytogenetics and FLT3-ITDneg/NPM1mut experience favorable outcomes when autografted in CR1, suggesting that Auto-SCT is a valid PRT option

    FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions.

    No full text
    The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in approximately one third of patients with acute myeloid leukemia (AML), either by internal tandem duplications (FLT3-ITD), or by a point mutation mainly involving the tyrosine kinase domain (FLT3-TKD). Patients with FLT3-ITD have a high risk of relapse and low cure rates. Several FLT3 tyrosine kinase inhibitors have been developed in the last few years with variable kinase inhibitory properties, pharmacokinetics, and toxicity profiles. FLT3 inhibitors are divided into first generation multi-kinase inhibitors (such as sorafenib, lestaurtinib, midostaurin) and next generation inhibitors (such as quizartinib, crenolanib, gilteritinib) based on their potency and specificity of FLT3 inhibition. These diverse FLT3 inhibitors have been evaluated in myriad clinical trials as monotherapy or in combination with conventional chemotherapy or hypomethylating agents and in various settings, including front-line, relapsed or refractory disease, and maintenance therapy after consolidation chemotherapy or allogeneic stem cell transplantation. In this practical question-and-answer-based review, the main issues faced by the leukemia specialists on the use of FLT3 inhibitors in AML are addressed
    corecore