47 research outputs found

    Holocene geochemical footprint from Semiarid alpine wetlands in southern Spain

    Get PDF
    Here we provide the geochemical dataset that our research group has collected after 10 years of investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene sedimentary records from four alpine sites (ranging from ∌2500 to ∌3000 masl): two peatlands and two shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry (EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of natural climate change, overprinted by human impact, as well as to project new management policies in similar protected areas.Universidad de Granada. Departamento de EstratigrafĂ­a y PaleontologĂ­aJunta de AndalucĂ­a: Grupos de investigaciĂłn RNM190 y RNM309Junta de AndalucĂ­a: Proyecto P11-RNM-7332España, Ministerio de EconomĂ­a y Competitividad: Proyecto CGL2013-47038-RRamĂłn y Cajal Fellowship: RYC-2015-18966Small Research Grant by the Carnegie Trust for the Universities of ScotlandMarie Curie Intra-European Fellowship of the 7th Framework Programme for Research, Technological Development and Demonstration of the European Commission: NAOSIPUK. Grant Number: PIEF-GA-2012-62302

    Alpine bogs of southern Spain show human-induced environmental change superimposed on long-term natural variations

    Get PDF
    Recent studies have proved that high elevation environments, especially remote wetlands, are exceptional ecological sensors of global change. For example, European glaciers have retreated during the 20th century while the Sierra Nevada National Park in southern Spain witnessed the first complete disappearance of modern glaciers in Europe. Given that the effects of climatic fluctuations on local ecosystems are complex in these sensitive alpine areas, it is crucial to identify their long-term natural trends, ecological thresholds, and responses to human impact. In this study, the geochemical records from two adjacent alpine bogs in the protected Sierra Nevada National Park reveal different sensitivities and long-term environmental responses, despite similar natural forcings, such as solar radiation and the North Atlantic Oscillation, during the late Holocene. After the Industrial Revolution both bogs registered an independent, abrupt and enhanced response to the anthropogenic forcing, at the same time that the last glaciers disappeared. The different response recorded at each site suggests that the National Park and land managers of similar regions need to consider landscape and environmental evolution in addition to changing climate to fully understand implications of climate and human influence.This study was supported by the project P11-RNM 7332 of the “Junta de Andalucía”, the projects CGL2013-47038-R and CGL2015-67130-C2-1-R of the “Ministerio de Economía y Competitividad of Spain and Fondo Europeo de Desarrollo Regional FEDER” and the research group RNM0190 and RNM309 (Junta de Andalucía). A.G.-A. was also supported by a Marie Curie Intra-European Fellowship of the 7th Framework Programme for Research, Technological Development and Demonstration of the European Commission (NAOSIPUK. Grant Number: PIEF-GA-2012-623027) and by a Ramón y Cajal Fellowship RYC-2015-18966 of the Spanish Government (Ministerio de Economía y Competividad). J.L.T. was also supported by a Small Research Grant by the Carnegie Trust for the Universities of Scotland and hosted the NAOSIPUK project (PIEF-GA-2012-623027). M. J. R-R acknowledges the PhD funding provided by Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (P11-RNM 7332)

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Human intestinal parasites in the past: new findings and a review

    Full text link
    corecore