1,651 research outputs found

    High-resolution in vivo fundus angiography using a non-adaptive optics imaging system

    Get PDF
    Purpose: We provide a proof of concept for the detailed characterization of retinal capillary features and surrounding photoreceptor mosaic using a customized nonadaptive optics angiography imaging system. Methods: High-resolution fluorescein angiography (FFA) and/or indocyanine green angiography (ICGA) images were obtained using a modified Heidelberg retina angiograph (HRA2) device with a reduced scan angle enabling 3° field of view. Colocalized images of the photoreceptor mosaic also were captured in vivo using the same instrument. Visibility of vascular subbranches were compared between high-resolution images and conventional fundus angiography (FA) with a 30° field of view. Results: High-resolution angiographic and infrared images (3° × 3° field of view, a 10-fold magnification) were obtained in 10 participants. These included seven patients with various retinal diseases, including myopic degeneration, diabetic retinopathy, macular telangiectasia, and central serous chorioretinopathy, as well as three healthy controls. Images of the retinal vasculature down to the capillary level were obtained on angiography with the ability to visualize a mean 1.2 levels more subbranches compared to conventional FA. In addition, imaging of the photoreceptor cone mosaic, to a sufficient resolution to calculate cone density, was possible. Movement of blood cells within the vasculature also was discernible on infrared videography. Conclusions: This exploratory study demonstrates that fast high-resolution angiography and cone visualization is feasible using a commercially available imaging system. Translational Relevance: This offers potential to better understand the relationship between the retinal neurovascular system in health and disease and the timing of therapeutic interventions in disease states

    Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking) objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS). The comparisons among experimental situation were quantified by using the information theory.</p> <p>Results</p> <p>We found that the change of the vibrissal slip-resistance is a way to improve the roughness discrimination of surfaces. As roughness increased, the RMS values also increased in almost all cases. In addition, we observed a better discrimination performance in the retraction phase (maximum amount of information).</p> <p>Conclusions</p> <p>The evidence of amplitude changes due to roughness surfaces and slip-resistance levels allows to speculate that texture information is slip-resistance dependent at peripheral level.</p

    Fatal Outcome in Bacteremia is Characterized by High Plasma Cell Free DNA Concentration and Apoptotic DNA Fragmentation: A Prospective Cohort Study

    Get PDF
    INTRODUCTION: Recent studies have shown that apoptosis plays a critical role in the pathogenesis of sepsis. High plasma cell free DNA (cf-DNA) concentrations have been shown to be associated with sepsis outcome. The origin of cf-DNA is unclear. METHODS: Total plasma cf-DNA was quantified directly in plasma and the amplifiable cf-DNA assessed using quantitative PCR in 132 patients with bacteremia caused by Staphylococcus aureus, Streptococcus pneumoniae, ß-hemolytic streptococcae or Escherichia coli. The quality of cf-DNA was analyzed with a DNA Chip assay performed on 8 survivors and 8 nonsurvivors. Values were measured on days 1-4 after positive blood culture, on day 5-17 and on recovery. RESULTS: The maximum cf-DNA values on days 1-4 (n = 132) were markedly higher in nonsurvivors compared to survivors (2.03 vs 1.26 ug/ml, p<0.001) and the AUCROC in the prediction of case fatality was 0.81 (95% CI 0.69-0.94). cf-DNA at a cut-off level of 1.52 ug/ml showed 83% sensitivity and 79% specificity for fatal disease. High cf-DNA (>1.52 ug/ml) remained an independent risk factor for case fatality in a logistic regression model. Qualitative analysis of cf-DNA showed that cf-DNA displayed a predominating low-molecular-weight cf-DNA band (150-200 bp) in nonsurvivors, corresponding to the size of the apoptotic nucleosomal DNA. cf-DNA concentration showed a significant positive correlation with visually graded apoptotic band intensity (R = 0.822, p<0.001). CONCLUSIONS: Plasma cf-DNA concentration proved to be a specific independent prognostic biomarker in bacteremia. cf-DNA displayed a predominating low-molecular-weight cf-DNA band in nonsurvivors corresponding to the size of apoptotic nucleosomal DNA

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure

    Relationship Between Serum NMDA Receptor Antibodies and Response to Antipsychotic Treatment in First-Episode Psychosis

    Get PDF
    Background: When psychosis develops in NMDA receptor (NMDAR) antibody encephalitis, it usually has an acute or subacute onset, and antipsychotic treatment may be ineffective and associated with adverse effects. Serum NMDAR antibodies have been reported in a minority of patients with first-episode psychosis (FEP), but their role in psychosis onset and response to antipsychotic treatment is unclear. Methods: Sera from 387 patients with FEP (duration of psychosis <2 years, minimally or never treated with antipsychotics) undergoing initial treatment with amisulpride as part of the OPTiMiSE (Optimization of Treatment and Management of Schizophrenia in Europe) trial (ClinicalTrials.gov number NCT01248195) were tested for NMDAR IgG antibodies using a live cell–based assay. Symptom severity was assessed using the Positive and Negative Syndrome Scale and the Clinical Global Impressions Scale at baseline and again after 4 weeks of treatment with amisulpride. Results: At baseline, 15 patients were seropositive for NMDAR antibodies and 372 were seronegative. The seropositive patients had similar symptom profiles and demographic features to seronegative patients but a shorter duration of psychosis (median 1.5 vs. 4.0 months; p =.031). Eleven seropositive and 284 seronegative patients completed 4 weeks of amisulpride treatment: after treatment, there was no between-groups difference in improvement in Positive and Negative Syndrome Scale scores or in the frequency of adverse medication effects. Conclusions: These data suggest that in FEP, NMDAR antibody seropositivity alone is not an indication for using immunotherapy instead of antipsychotic medications. Further studies are required to establish what proportion of patients with FEP who are NMDAR antibody seropositive have coexisting cerebrospinal fluid inflammatory changes or other paraclinical evidence suggestive of a likely benefit from immunotherapy

    Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells

    Get PDF
    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation

    The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

    Get PDF
    IMPORTANCE: Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. OBJECTIVE: To evaluate and, as needed, update definitions for sepsis and septic shock. PROCESS: A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROM EVIDENCE SYNTHESIS: Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. RECOMMENDATIONS: Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. CONCLUSIONS AND RELEVANCE: These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis
    corecore