9 research outputs found

    the hidden biodiversity data retained in pre linnaean works a case study with two important xvii century italian entomologists

    Get PDF
    Before Linnaeus published the Systema Naturae, in which introduced the modern species concept, a huge amount of information on ecology, behaviour and diversity of many animals had been accumulated. This information, often extremely detailed, suffers from the lack of the assignation of the studied organisms to their modern specific names. Here, we examine in detail the works of Antonio Vallisneri (1661–1730), one of the most important figures of early experimental entomology in Italy. We analyse the ecological and ethological contributions of Vallisneri, as well as those that Diacinto Cestoni (1637–1718), another Italian naturalist, sent to Vallisneri, to the knowledge of parasitoid, predatory and gall-making wasps (Hymenoptera), by studying the Saggio de' Dialoghi sopra la curiosa origine di molti Insetti and the Quaderni di Osservazioni I-III, trying to assign current taxonomy to the observed insects based on eco-ethological and morphological descriptions. Valuable data have been found in the analysed works on taxonomically diverse ecological webs involving wasps. Information regarded a variety of hymenopteran parasitoids of other Hymenoptera, dipteran parasitoids of Hymenoptera, coleopteran parasitoids of Hymenoptera, and hymenopteran parasitoids associated with non-hymenopteran hosts. Overall, about 20 wasp genera could have been objects of Vallisneri and Cestoni observations, which include the first detailed ecological and ethological data on many of them. Detailed re-examinations of ancient studies may contribute to our knowledge on biodiversity by providing historical distribution data as well as unveiling trophic interactions that may have been modified due to biodiversity loss in the last century

    Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp.

    No full text
    Geographical subspecies of wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae), differ considerably in sex chromosome constitution owing to sex chromosome fusions with autosomes, which leads to variation in chromosome numbers. We cloned S. cynthia orthologues of 16 Bombyx mori genes and mapped them to chromosome spreads of S. cynthia subspecies by fluorescence in situ hybridization (FISH) to determine the origin of S. cynthia neo-sex chromosomes. FISH mapping revealed that the Z chromosome and chromosome 12 of B. mori correspond to the Z chromosome and an autosome (A1) of S. c. ricini (Vietnam population, 2n=27, Z0 in female moths), respectively. B. mori chromosome 11 corresponds partly to another autosome (A2) and partly to a chromosome carrying nucleolar organizer region (NOR) of this subspecies. The NOR chromosome of S. c. ricini is also partly homologous to B. mori chromosome 24. Furthermore, our results revealed that two A1 homologues each fused with the W and Z chromosomes in a common ancestor of both Japanese subspecies S. c. walkeri (Sapporo population, 2n=26, neo-Wneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25, neo-WZ1Z2). One homologue, corresponding to the A2 autosome in S. c. ricini and S. c. walkeri, fused with the W chromosome in S. cynthia subsp. indet. Consequently, the other homologue became a Z2 chromosome. These results clearly showed a step-by-step evolution of the neo-sex chromosomes by repeated autosome–sex chromosome fusions. We suggest that the rearrangements of sex chromosomes may facilitate divergence of S. cynthia subspecies towards speciation
    corecore