66 research outputs found
Structural and functional papez circuit integrity in amyotrophic lateral sclerosis
Cognitive impairment in amyotrophic lateral sclerosis (ALS) is heterogeneous but now recognized as a feature in non-demented patients and no longer exclusively attributed to executive dysfunction. However, despite common reports of temporal lobe changes and memory deficits in ALS, episodic memory has been less explored. In the current study, we examined how the Papez circuit—a circuit known to participate in memory processes—is structurally and functionally affected in ALS patients (n = 20) compared with healthy controls (n = 15), and whether these changes correlated with a commonly used clinical measure of episodic memory. Our multimodal MRI approach (cortical volume, voxel-based morphometry, diffusion tensor imaging and resting state functional magnetic resonance) showed reduced gray matter in left hippocampus, left entorhinal cortex and right posterior cingulate as well as increased white matter fractional anisotropy and decreased mean diffusivity in the left cingulum bundle (hippocampal part) of ALS patients compared with controls. Interestingly, thalamus, mammillary bodies and fornix were preserved. Finally, we report a decreased functional connectivity in ALS patients in bilateral hippocampus, bilateral anterior and posterior parahippocampal gyrus and posterior cingulate. The results revealed that ALS patients showed statistically significant structural changes, but more important, widespread prominent functional connectivity abnormalities across the regions comprising the Papez circuit. The decreased functional connectivity found in the Papez network may suggest these changes could be used to assess risk or assist early detection or development of memory symptoms in ALS patients even before structural changes are established
CD4-Specific Designed Ankyrin Repeat Proteins Are Novel Potent HIV Entry Inhibitors with Unique Characteristics
Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins—high physical stability, specificity and low production costs—with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development
The Repertoire and Dynamics of Evolutionary Adaptations to Controlled Nutrient-Limited Environments in Yeast
The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for ∼200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light on the function and regulation of individual metabolic pathways
Six priorities to advance the science and practice of coral reef restoration worldwide
Coral reef restoration is a rapidly growing movement galvanized by the accelerating degradation of the world's tropical coral reefs. The need for concerted and collaborative action focused on the recovery of coral reef ecosystems coalesced in the creation of the Coral Restoration Consortium (CRC) in 2017. In March 2020, the CRC leadership team met for a biennial review of international coral reef restoration efforts and a discussion of perceived knowledge and implementation bottlenecks that may impair scalability and efficacy. Herein we present six priorities wherein the CRC will foster scientific advancement and collaboration to: (1) increase restoration efficiency, focusing on scale and cost-effectiveness of deployment; (2) scale up larval-based coral restoration efforts, emphasizing recruit health, growth, and survival; (3) ensure restoration of threatened coral species proceeds within a population-genetics management context; (4) support a holistic approach to coral reef ecosystem restoration; (5) develop and promote the use of standardized terms and metrics for coral reef restoration; and (6) support coral reef restoration practitioners working in diverse geographic locations. These priorities are not exhaustive nor do we imply that accomplishing these tasks alone will be sufficient to restore coral reefs globally; rather these are topics where we feel the CRC community of practice can make timely and significant contributions to facilitate the growth of coral reef restoration as a practical conservation strategy. The goal for these collective actions is to provide tangible, local-scale advancements in reef condition that offset declines resulting from local and global stressors including climate change
Effects of amiodarone on short QT syndrome variant 3 in human ventricles: a simulation study.
Background Short QT syndrome (SQTS) is a newly identified clinical disorder associated with atrial and/or ventricular arrhythmias and increased risk of sudden cardiac death (SCD). The SQTS variant 3 is linked to D172N mutation to the KCNJ2 gene that causes a gain-of-function to the inward rectifier potassium channel current (I K1), which shortens the ventricular action potential duration (APD) and effective refractory period (ERP). Pro-arrhythmogenic effects of SQTS have been characterized, but less is known about the possible pharmacological treatment of SQTS. Therefore, in this study, we used computational modeling to assess the effects of amiodarone, class III anti-arrhythmic agent, on human ventricular electrophysiology in SQT3.
Methods The ten Tusscher et al. model for the human ventricular action potentials (APs) was modified to incorporate I K1 formulations based on experimental data of Kir2.1 channels (including WT, WT-D172N and D172N conditions). The modified cell model was then implemented to construct one-dimensional (1D) and 2D tissue models. The blocking effects of amiodarone on ionic currents were modeled using IC50 and Hill coefficient values from literatures. Effects of amiodarone on APD, ERP and pseudo-ECG traces were computed. Effects of the drug on the temporal and spatial vulnerability of ventricular tissue to genesis and maintenance of re-entry were measured, as well as on the dynamic behavior of re-entry.
Results Amiodarone prolonged the ventricular cell APD and decreased the maximal voltage heterogeneity (δV) among three difference cells types across transmural ventricular wall, leading to a decreased transmural heterogeneity of APD along a 1D model of ventricular transmural strand. Amiodarone increased cellular ERP, prolonged QT interval and decreased the T-wave amplitude. It reduced tissue’s temporal susceptibility to the initiation of re-entry and increased the minimum substrate size necessary to sustain re-entry in the 2D tissue.
Conclusions At the therapeutic-relevant concentration of amiodarone, the APD and ERP at the single cell level were increased significantly. The QT interval in pseudo-ECG was prolonged and the re-entry in tissue was prevented. This study provides further evidence that amiodarone may be a potential pharmacological agent for preventing arrhythmogenesis for SQT3 patients
- …