17 research outputs found
Monoclonal antibodies directed to fucoidan preparations from brown algae
Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance
Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection
The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
Tempo-spectral multiplexing in flow cytometry with lifetime detection using QD-encoded polymer beads
Life Cycle Assessment of Seaweed Cultivation Systems
Life cycle assessment (LCA) is a holistic methodology that identifies the impacts of a production system on the environment. The results of an LCA are used to identify which processes can be improved to minimize impacts and optimize production. LCA is composed of four phases: (1) goal and scope definition, (2) life cycle inventory analysis, (3) life cycle impact assessment, and (4) interpretation. The goal and scope define the purpose of the analysis; describe the system and its function, establish a functional unit to collect data and present results, set the system boundaries, and explain the assumptions made and data quality requirements. Life cycle inventory analysis is the collection, processing and organization of data. Life cycle impact assessment associates the results from the inventory phase to one or multiple impacts on environment or human health. The interpretation evaluates the outcome of each phase of the analysis. In this phase the practitioner decides whether it is necessary to amend other phases, e.g., collection of more data or adjustments of goal of the analysis. In the interpretation, the practitioner draws conclusions, exposes the limitations, and provides recommendations to the readers. The quality of LCA of seaweed production and conversion is based on data availability and detail level. Performing an LCA at the initial stage of seaweed production in Europe is an advantage: the recommended design improvements can be implemented without significant economic investments. The quality of LCA will keep improving with the increase of scientific publications, data sharing, and public reports.</p