51 research outputs found
Impedance-Matching Hearing in Paleozoic Reptiles: Evidence of Advanced Sensory Perception at an Early Stage of Amniote Evolution
BACKGROUND: Insights into the onset of evolutionary novelties are key to the understanding of amniote origins and diversification. The possession of an impedance-matching tympanic middle ear is characteristic of all terrestrial vertebrates with a sophisticated hearing sense and an adaptively important feature of many modern terrestrial vertebrates. Whereas tympanic ears seem to have evolved multiple times within tetrapods, especially among crown-group members such as frogs, mammals, squamates, turtles, crocodiles, and birds, the presence of true tympanic ears has never been recorded in a Paleozoic amniote, suggesting they evolved fairly recently in amniote history. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we performed a morphological examination and a phylogenetic analysis of poorly known parareptiles from the Middle Permian of the Mezen River Basin in Russia. We recovered a well-supported clade that is characterized by a unique cheek morphology indicative of a tympanum stretching across large parts of the temporal region to an extent not seen in other amniotes, fossil or extant, and a braincase specialized in showing modifications clearly related to an increase in auditory function, unlike the braincase of any other Paleozoic tetrapod. In addition, we estimated the ratio of the tympanum area relative to the stapedial footplate for the basalmost taxon of the clade, which, at 23:1, is in close correspondence to that of modern amniotes capable of efficient impedance-matching hearing. CONCLUSIONS/SIGNIFICANCE: Using modern amniotes as analogues, the possession of an impedance-matching middle ear in these parareptiles suggests unique ecological adaptations potentially related to living in dim-light environments. More importantly, our results demonstrate that already at an early stage of amniote diversification, and prior to the Permo-Triassic extinction event, the complexity of terrestrial vertebrate ecosystems had reached a level that proved advanced sensory perception to be of notable adaptive significance
Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study
Tree shape analyses are frequently used to infer the location of shifts in diversification rate within the Tree of Life. Many studies have supported a causal relationship between shifts and temporally coincident events such as the evolution of “key innovations”. However, the evidence for such relationships is circumstantial. We investigated patterns of diversification during the early evolution of Amniota from the Carboniferous to the Triassic, subjecting a new supertree to analyses of tree balance in order to infer the timing and location of diversification shifts. We investigated how uneven origination and extinction rates drive diversification shifts, and use two case studies (herbivory and an aquatic lifestyle) to examine whether shifts tend to be contemporaneous with evolutionary novelties. Shifts within amniotes tend to occur during periods of elevated extinction, with mass extinctions coinciding with numerous and larger shifts. Diversification shifts occurring in clades that possess evolutionary innovations do not coincide temporally with the appearance of those innovations, but are instead deferred to periods of high extinction rate. We suggest such innovations did not cause increases in the rate of cladogenesis, but allowed clades to survive extinction events. We highlight the importance of examining general patterns of diversification before interpreting specific shifts
Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells
The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network
Geometry and field theory in multi-fractional spacetime
We construct a theory of fields living on continuous geometries with
fractional Hausdorff and spectral dimensions, focussing on a flat background
analogous to Minkowski spacetime. After reviewing the properties of fractional
spaces with fixed dimension, presented in a companion paper, we generalize to a
multi-fractional scenario inspired by multi-fractal geometry, where the
dimension changes with the scale. This is related to the renormalization group
properties of fractional field theories, illustrated by the example of a scalar
field. Depending on the symmetries of the Lagrangian, one can define two
models. In one of them, the effective dimension flows from 2 in the ultraviolet
(UV) and geometry constrains the infrared limit to be four-dimensional. At the
UV critical value, the model is rendered power-counting renormalizable.
However, this is not the most fundamental regime. Compelling arguments of
fractal geometry require an extension of the fractional action measure to
complex order. In doing so, we obtain a hierarchy of scales characterizing
different geometric regimes. At very small scales, discrete symmetries emerge
and the notion of a continuous spacetime begins to blur, until one reaches a
fundamental scale and an ultra-microscopic fractal structure. This fine
hierarchy of geometries has implications for non-commutative theories and
discrete quantum gravity. In the latter case, the present model can be viewed
as a top-down realization of a quantum-discrete to classical-continuum
transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and
improved (especially section 4.5), typos corrected, references added; v4:
further typos correcte
New Permian fauna from tropical Gondwana
This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article
- …