89 research outputs found

    Identification of mechano-sensitive C fibre sensitization and contribution to nerve injury-induced mechanical hyperalgesia

    Get PDF
    Background: C fibre hyperexcitability is fundamental to chronic pain development in humans and rodents; therefore, peripheral sensory neuronal sensitization plays a role in the development of mechanical hyperalgesia. However, the axonal properties and underlying mechanisms that are associated to these chronic pain states still require investigation. Methods: Teased fibre electrophysiology of the saphenous nerve was used to identify C fibres in naïve and nerve-injured rats. C fibres were identified using electrical stimulation which further provided conduction velocity slowing profiles. From these nerve filaments evoked responses to mechanical stimuli were recorded. Vehicle or galanin were applied directly to the saphenous nerve trunk prior to stimulation. Results: Increased levels of mechanically evoked activity in mechano-sensitive C fibres was associated to reduced conduction failure, enhanced conduction velocity latency recovery and reduced conduction velocity slowing. Mechanical hyperalgesia developed in nerve-injured animals in which mechano-sensitive C fibres demonstrated increased mechanically evoked responses and reduced rate of adaptation. Mechano-sensitive C fibres in nerve-injured animals had reduced levels of conduction velocity slowing, enhanced rate of conduction velocity recovery and reduced firing frequency failure versus naïve animals; all hallmarks of enhanced sensory neuronal excitability. Directly applying the antinociceptive agent galanin to the saphenous nerve trunk in naive animals led to increased conduction failure, reduced latency recovery rate and increased levels of conduction velocity slowing. Discussion: Nerve injury-induced enhanced neural responses to mechanical stimulation are associated to defined parameters set out by conduction velocity slowing, mediated via axonal processing. Application of galanin inhibits axonal excitability

    Cisplatin induced sensory neuropathy is prevented by vascular endothelial growth factor-A

    Get PDF
    Increased patient survival is a mark of modern anti-cancer therapy success. Unfortunately treatment side-effects such as neurotoxicity are a major long term concern. Sensory neuropathy is one of the common toxicities that can arise during platinum based chemotherapy. In many cases the current poor understanding of the neurological degeneration and lack of suitable analgesia has led to high incidences of patient drop out of treatment. VEGF-A is a prominent neuroprotective agent thus it was hypothesised to prevent cisplatin induced neuropathy. Systemic cisplatin treatment (lasting 3 weeks biweekly) resulted in mechanical allodynia and heat hyperalgesia in mice when compared to vehicle control. PGP9.5 sensory nerve fibre innervation was reduced in the plantar skin in the cisplatin treated group versus vehicle control mice. The cisplatin induced sensory neurodegeneration was associated with increased cleaved caspase 3 expression as well as a reduction in Activating Transcription Factor 3 and pan VEGF-A expression in sensory neurons. VEGF-A165b expression was unaltered between vehicle and cisplatin treatment. rhVEGF-A165a and rhVEGF-A165b both prevented cisplatin induced sensory neurodegeneration. Cisplatin exposure blunts the regenerative properties of sensory neurons thus leading to sensory neuropathy. However, here it is identified that administration of VEGF-A isoform subtypes induce regeneration and prevent cell death and are therefore a possible adjunct therapy for chemotherapy induced neuropathy

    Spinal cord vascular degeneration impairs duloxetine penetration

    Get PDF
    Introduction: Chronic pain is a prevalent physically debilitating health-related morbidity. Frontline analgesics are inadequate, providing only partial pain relief in only a proportion of the patient cohort. Here, we explore whether alterations in spinal cord vascular perfusion are a factor in reducing the analgesic capability of the noradrenaline reuptake inhibitor, duloxetine. Method: An established rodent model of spinal cord vascular degeneration was used. Endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse was induced via hydroxytamoxifen administered via intrathecal injection. Duloxetine was administered via intraperitoneal injection, and nociceptive behavioural testing was performed in both WT and VEGFR2KO mice. LC-MS/MS was performed to explore the accumulation of duloxetine in the spinal cord in WT and VEGFR2KO mice. Results: Spinal cord vascular degeneration leads to heat hypersensitivity and a decline in capillary perfusion. The integrity of noradrenergic projections (dopa - hydroxylase labelled) in the dorsal horn remained unaltered in WT and VEGFR2KO mice. There was an association between dorsal horn blood flow with the abundance of accumulated duloxetine in the spinal cord and analgesic capacity. In VEGFR2KO mice, the abundance of duloxetine in the lumbar spinal cord was reduced and was correlated with reduced anti-nociceptive capability of duloxetine. Discussion: Here, we show that an impaired vascular network in the spinal cord impairs the anti-nociceptive action of duloxetine. This highlights that the spinal cord vascular network is crucial to maintaining the efficacy of analgesics to provide pain relief

    Sensory neuronal sensitisation occurs through HMGB-1/RAGE and TRPV1 in high glucose conditions

    Get PDF
    Many potential causes for painful diabetic neuropathy have been proposed including actions of cytokines and growth factors. High mobility group protein B1 (HMGB1) is a RAGE agonist, increased in diabetes, that contributes to pain by modulating peripheral inflammatory responses. HMGB1 enhances nociceptive behaviour in naïve animals through an unknown mechanism. We tested the hypothesis that HMGB1 causes pain through direct neuronal activation of RAGE and alteration of nociceptive neuronal responsiveness. HMGB1 and RAGE expression were increased in skin and primary sensory (DRG) neurons of diabetic rats at times when pain behaviour was enhanced. Agonist-evoked TRPV1-mediated calcium responses increased in cultured DRG neurons from diabetic rats and in neurons from naïve rats exposed to high glucose concentrations. HMGB1-mediated increases in TRPV1-evoked calcium responses in DRG neurons were RAGE and PKC-dependent, and this was blocked by co-administration of the growth factor splice variant, VEGF-A165b. Pain behaviour and DRG RAGE expression increases were blocked by VEGF-A 165 b treatment of diabetic rats in vivo. HMGB-1-RAGE activation sensitizes DRG neurons in vitro. VEGF-A165b blocks HMGB-1/RAGE DRG activation, which may contribute to its analgesic properties in vivo

    NMN Deamidase Delays Wallerian Degeneration and Rescues Axonal Defects Caused by NMNAT2 Deficiency In Vivo

    Get PDF
    Axons require the axonal NAD-synthesizing enzyme NMNAT2 to survive. Injury or genetically induced depletion of NMNAT2 triggers axonal degeneration or defective axon growth. We have previously proposed that axonal NMNAT2 primarily promotes axon survival by maintaining low levels of its substrate NMN rather than generating NAD; however, this is still debated. NMN deamidase, a bacterial enzyme, shares NMN-consuming activity with NMNAT2, but not NAD-synthesizing activity, and it delays axon degeneration in primary neuronal cultures. Here we show that NMN deamidase can also delay axon degeneration in zebrafish larvae and in transgenic mice. Like overexpressed NMNATs, NMN deamidase reduces NMN accumulation in injured mouse sciatic nerves and preserves some axons for up to three weeks, even when expressed at a low level. Remarkably, NMN deamidase also rescues axonal outgrowth and perinatal lethality in a dose-dependent manner in mice lacking NMNAT2. These data further support a pro-degenerative effect of accumulating NMN in axons in vivo. The NMN deamidase mouse will be an important tool to further probe the mechanisms underlying Wallerian degeneration and its prevention.We thank Tim Self, Denise McLean, Ian Ward, and CSI/SLIM for use of imaging facilities and help with tissue processing. This work was funded by a Faculty of Medicine and Health Sciences, University of Nottingham nonclinical senior fellowship (to L.C.); a Marie Curie Intra European Fellowship (project number 301897) within the European Community 7th Framework Programme (to M.D.S. and L.C.); and an Institute Strategic Programme Grant from the Biotechnology and Biological Sciences Research Council (BBSRC) and Medical Research Council (MRC) grant MR/N004582/1 (to J.G. and M.P.C.)

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
    corecore