6,628 research outputs found
Experimental determination of pressure drop and flow characteristics of dilute gas-solid suspensions
Loading ratio, glass particle size, and air Reynolds number effects on pressure drop and flow characteristics of air-solid suspension in turbulent pipe flo
Back and forth from cool core to non-cool core: clues from radio-halos
X-ray astronomers often divide galaxy clusters into two classes: "cool core"
(CC) and "non-cool core" (NCC) objects. The origin of this dichotomy has been
the subject of debate in recent years, between "evolutionary" models (where
clusters can evolve from CC to NCC, mainly through mergers) and "primordial"
models (where the state of the cluster is fixed "ab initio" by early mergers or
pre-heating). We found that in a well-defined sample (clusters in the GMRT
Radio halo survey with available Chandra or XMM-Newton data), none of the
objects hosting a giant radio halo can be classified as a cool core. This
result suggests that the main mechanisms which can start a large scale
synchrotron emission (most likely mergers) are the same that can destroy CC and
therefore strongly supports "evolutionary" models of the CC-NCC dichotomy.
Moreover combining the number of objects in the CC and NCC state with the
number of objects with and without a radio-halo, we estimated that the time
scale over which a NCC cluster relaxes to the CC state, should be larger than
the typical life-time of radio-halos and likely shorter than about 3 Gyr. This
suggests that NCC transform into CC more rapidly than predicted from the
cooling time, which is about 10 Gyr in NCC systems, allowing the possibility of
a cyclical evolution between the CC and NCC states.Comment: Accepted for publication in A&
The structure of Abell 1351: a bimodal galaxy cluster with peculiar diffuse radio emission
We aim to review the internal structure and dynamics of the Abell 1351
cluster, shown to host a radio halo with a quite irregular shape. Our analysis
is based on radial velocity data for 135 galaxies obtained at the Telescopio
Nazionale Galileo. We combine galaxy velocities and positions to select 95
cluster galaxy members and analyse the internal dynamics of the whole cluster.
We also examine X-ray data retrieved from Chandra and XMM archives. We measure
the cluster redshift, =0.325, the line-of-sight (LOS) velocity dispersion,
\sigma_v~1500 km/s, and the X-ray temperature, kT~9 keV. From both X-ray and
optical data independently, we estimate a large cluster mass, in the 1--4
M range. We attribute the extremely high value of \sigma_v to
the bimodality in the velocity distribution. We find evidence of a significant
velocity gradient and optical 3D substructure. The X-ray analysis also shows
many features in favour of a complex cluster structure, probably supporting an
ongoing merger of substructures in Abell 1351. The observational scenario
agrees with the presence of two main subclusters in the northern region, each
with its brightest galaxy (BCG1 and BCG2), detected as the two most important
X-ray substructures with a rest-frame LOS velocity difference of \Delta v~2500
km/s (in the rest frame) and probably being in large part aligned with the LOS.
We conclude that Abell 1351 is a massive merging cluster. The details of the
cluster structure allow us to interpret the quite asymmetric radio halo as a
`normal' halo plus a southern relic, strongly supporting a previous suggestion
based only on inspection of radio and preliminary X-ray data.Comment: 13 pages, 13 figures, 1 tabl
The potential release of phosphorus in floodplains
In the Illinois River Watershed, there has been growing concern over elevated phosphorus concentrations in the water column. This study evaluated how much phosphorus is contributed from floodplain soils into surface waters, examining the relationship between the flux of phosphorus released and the amount of phosphorus stored in the soil. This was investigated by artificially inundating soil cores from four sites and determining the soluble reactive phosphorus concentrations of the overlying water and the levels of Water and Mehlich-3 extractable phosphorus in the soil. The flux of phosphorus to the overlying water ranged from 0.43 to 6.61 mg m-2 hr-1 within the short-term (16.5-hr incubation) and 0.06 to 1.26 mg m-2 hr-1 over the long term (282.5-hr incubation). Phosphorus flux to the overlying water was significantly correlated with the amount of phosphorus stored in the soil. This study showed that riparian soils with elevated phosphorus content have the potential to release phosphorus when flooded
Radio emission at the centre of the galaxy cluster Abell 3560: evidence for core sloshing?
Previous radio observations of the galaxy cluster A3560 in the Shapley
Concentration showed complex radio emission associated with the brightest
cluster member.To understand its origin we observed it with the GMRT, the VLA
and ATCA at 240 and 610 MHz, 1.28,1.4, 2.3,4.8 and 8.4 GHz, and performed a
detailed morphological and spectral study of the radio emission associated with
the BCG. We also observed the cluster with XMM-Newton and Chandra to derive the
properties of the ICM. The radio emission of the N-E nucleus of the dumb-bell
BCG shows an active radio galaxy, plus aged diffuse emission, which is not
refurbished at present. Our Chandra data show that the radio active nucleus of
the BCG has extended X-ray emission, which we classify as a low-luminosity
corona. A residual image of the XMM-Newton brightness shows the presence of a
spiral-like feature, which we interpret as the signature of gas sloshing. The
presence of a subgroup is clear in the surface brightness residual map, and in
the XMM-Newton temperature analysis. The optical 2D analysis shows substructure
in A3560. A galaxy clump was found at the location of the X-ray subgroup, and
another group is present south of the cluster core, close to the spiral-like
feature. The aged part of the radio emission closely follows the spiral pattern
of the X-ray residual brightness distribution, while the two active radio lobes
are bent in a completely different direction. We conclude that the complex
radio emission associated with the cluster BCG is the result of a minor merger
event in A3560. The aged diffuse emission is strongly affected by the sloshing
motion in the ICM. On the other hand, the bent jets and lobes of the current
radio AGN activity may reflect a complex gas velocity field in the innermost
cluster regions and/or sloshing-induced oscillations in the motion of the cD
galaxy.Comment: 15 pages, 8 figures, 5 tables, A&A in pres
Evaluation of phosphorous removals by biochar supported nano-scale zero-valent iron
This study evaluated the effectiveness of biochar-supported nano-scale zero-valent iron (nZVI/BC) in removing phosphorus (P) from water. Samples of nZVI/BC were prepared using aqueous nanoparticles synthesis techniques, and were mixed with a stock phosphorus solution. To determine P reductions water samples were tested for P content using the ascorbic acid method. This procedure was repeated for samples of stock P solution, zero-valent iron (ZVI), biochar, and ZVI/BC. nZVI/BC reduced P content by 86% whereas ZVI, biochar, and ZVI/BC removed 6%, -23%, and 17% respectively. This suggests that nZVI/BC has the potential to be an effective method of stormwater remediation
Mass profiles and concentration-dark matter relation in X-ray luminous galaxy clusters
(Abriged) Assuming that the hydrostatic equilibrium holds between the
intracluster medium and the gravitational potential, we constrain the NFW
profiles in a sample of 44 X-ray luminous galaxy clusters observed with
XMM-Newton in the redshift range 0.1-0.3. We evaluate several systematic
uncertainties that affect our reconstruction of the X-ray masses. We measure
the concentration c200, the dark mass M200 and the gas mass fraction within
R500 in all the objects of our sample, providing the largest dataset of mass
parameters for galaxy clusters in this redshift range. We confirm that a tight
correlation between c200 and M200 is present and in good agreement with the
predictions from numerical simulations and previous observations. When we
consider a subsample of relaxed clusters that host a Low-Entropy-Core (LEC), we
measure a flatter c-M relation with a total scatter that is lower by 40 per
cent. From the distribution of the estimates of c200 and M200, with associated
statistical (15-25%) and systematic (5-15%) errors, we use the predicted values
from semi-analytic prescriptions calibrated through N-body numerical runs and
measure sigma_8*Omega_m^(0.60+-0.03)= 0.45+-0.01 (at 2 sigma level, statistical
only) for the subsample of the clusters where the mass reconstruction has been
obtained more robustly, and sigma_8*Omega_m^(0.56+-0.04) = 0.39+-0.02 for the
subsample of the 11 more relaxed LEC objects. With the further constraint from
the fgas distribution in our sample, we break the degeneracy in the
sigma_8-Omega_m plane and obtain the best-fit values sigma_8~1.0+-0.2
(0.75+-0.18 when the subsample of the more relaxed objects is considered) and
Omega_m = 0.26+-0.01.Comment: 21 pages. A&A in press. Minor revisions to match accepted version.
Corrected 2nd and 3rd column in Table 3, and equation (A.4
Where does the gas fueling star formation in BCGs originate?
We investigate the relationship between X-ray cooling and star formation in
brightest cluster galaxies (BCGs). We present an X-ray spectral analysis of the
inner regions, 10-40 kpc, of six nearby cool core clusters (z<0.35) observed
with Chandra ACIS. This sample is selected on the basis of the high star
formation rate (SFR) observed in the BCGs. We restrict our search for cooling
gas to regions that are roughly cospatial with the starburst. We fit single-
and multi-temperature mkcflow models to constrain the amount of isobarically
cooling intracluster medium (ICM). We find that in all clusters, below a
threshold temperature ranging between 0.9 and 3 keV, only upper limits can be
obtained. In four out of six objects, the upper limits are significantly below
the SFR and in two, namely A1835 and A1068, they are less than a tenth of the
SFR. Our results suggests that a number of mechanisms conspire to hide the
cooling signature in our spectra. In a few systems the lack of a cooling
signature may be attributed to a relatively long delay time between the X-ray
cooling and the star burst. However, for A1835 and A1068, where the X-ray
cooling time is shorter than the timescale of the starburst, a possible
explanation is that the region where gas cools out of the X-ray phase extends
to very large radii, likely beyond the core of these systems.Comment: to appear in A&
- …